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Abstract

This report presents an analysis of the likelihood of H5N1 outbreaks in different counties of
the United States in March 2023 using logistic regression, ridge regression, lasso regression, ridge
& lasso regression models. The models were trained using historical data from January 2022
to March 2023, and the accuracy of the models in predicting H5N1 outbreaks in March 2023 is
about 99.348%. The ridge & lasso regression model performed the best among the four models,
with an AUC of 0.7959950. The map generated based on the ridge & lasso regression model
indicated that counties in the north and west were at a higher risk of having H5N1 outbreaks in
March 2023, which matched the actual result. The report concludes that there are limitations
to the models, including the consideration of only a limited set of factors affecting the spread of
the virus and the use of historical data. Future work could incorporate additional data sources
and use more sophisticated machine learning techniques to improve the accuracy of the models.
The report also proposes some possible remedies to help control the spread of H5N1.
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1 Introduction

Poultry, such as chicken, turkey, goose, duck, and others, are staple foods on our dinner tables.
According to the United States Department of Agriculture (USDA) in 2022, each person had access
to 68.1 pounds of chicken for consumption in 2021. This indicates that chicken is the most popular
meat in the United States, and per capita egg consumption has increased by 15% in the past 20
years (UEP, 2021). However, like humans, poultry can also be infected with viruses, and in the
context of the COVID-19 pandemic, we are reminded of how a small virus can have a significant
impact on our lives. Bird flu caused by the H5N1 virus is one such example, and highly pathogenic
avian influenza (HPAI) A(H5) viruses have been detected since January 2022 in U.S. wild aquatic
birds, commercial poultry, and backyard or hobbyist flocks (CDC, 2023).

The H5N1 virus can have severe effects, and its outbreak has already caused economic, eco-
logical, and environmental consequences with long-term effects. For example, the price of a dozen
large Grade A eggs has more than doubled in 2022 in the United States (Iacurci, 2023). Moreover,
sometimes grocery stores run out of eggs due to the virus, making it difficult for millions of people in
the U.S. to maintain their usual levels of egg and poultry consumption. The virus has affected more
than 58.7 million poultry in 47 states and about 7,098 wild birds in 50 states and 1,022 counties
(CDC, 2023), posing incalculable risks to our ecological environment and the poultry industry.

Avian influenza is not a new occurrence, and its effects on humans have been long-lasting and
severe since its discovery in the 1880s. The H1N1 virus of avian influenza, for instance, caused 50
million deaths in 1918 (CDC, 2019), and the H5N1 virus has infected 868 people and caused 457
deaths since 2003, according to the World Health Organization (WHO) in 2018. Therefore, this
virus not only affects people’s food consumption but also their health.

Given the economic, ecological, environmental, and health effects of avian influenza, we aim
to perform analyses on its cases to provide predictions and suggestions for reducing its negative
impacts. We will use mathematical and statistical methods to determine which counties are more
likely to be infected by the H5N1 virus and should thus implement more countermeasures. We will
also conduct visualizations and analyses based on the datasets provided by various authoritative
organizations and institutions such as the CDC, USDA, U.S. Census Bureau, and the Bureau of
Labor Statistics.

The objective of this report is to develop and evaluate machine learning models to predict
the outbreak of the H5N1 virus in the United States in the future. Our report will focus on
analyzing data from past outbreaks to build models that can accurately predict the likelihood of
future outbreaks in different regions of the country. By identifying high-risk areas and providing
actionable insights, we hope to contribute to efforts to mitigate the impact of the H5N1 virus and
protect public health.

2 Data Description and Visualization

To develop a predictive model for identifying counties that might be at risk of H5N1 infection
in the future, we need to understand the structure and content of our data. Our approach involves
merging four datasets to create a single, curated dataset that contains information on reported
H5N1 cases in each county during a specific month, from January 2022 to March 2023.

The cleaned dataset will be used to train our classification model to predict which counties
might be likely to experience H5N1 infection in the upcoming month. By analyzing patterns in the
data, we can identify key variables that are correlated with an increased risk of infection, such as
location, temperature, and flock type. This information will help us develop targeted interventions
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and public health strategies to mitigate the spread of H5N1 in high-risk areas.

2.1 United States Counties Database

This public dataset is provided by Pareto Software, LLC, who builds it from the ground up
using authoritative sources such as the U.S. Census Bureau and the Bureau of Labor Statistics.
It contains all 3,143 county names, their Federal Information Processing Standard (FIPS) codes,
longitudes, and latitudes with respect to the 51 states, including Washington D.C., in the United
States in 2023.

We made some changes to this dataset for future convenience. Specifically, we changed the
state full names to their abbreviations. This dataset makes it possible to generate a detailed
geographical report of H5N1 cases in each county in the United States by matching observations
in the latter datasets provided by the CDC.

There are 3,143 observations (counties) and 5 variables after the modification, as shown in
Table 1 below.

Table 1: First 6 Observations of United States Counties Database

FIPS Code State County Latitude Longitude

6037 CA Los Angeles County 34.3209 -118.2247
17031 IL Cook County 41.8401 -87.8168
48201 TX Harris County 29.8578 -95.3936
4013 AZ Maricopa County 33.3490 -112.4915
6073 CA San Diego County 33.0343 -116.7350
6059 CA Orange County 33.7031 -117.7609

2.2 H5N1 Bird Flu Detections across the United States (Backyard and Com-
mercial)

The second public dataset is about H5N1 bird flu outbreaks involving commercial poultry
facilities, backyard poultry, and hobbyist bird flocks by county in the United States.

We made some modifications to this dataset for future convenience. Since the original dataset
includes all records with detection dates, which is too specific, we split the date, year, and month
in each observation for future data cleaning and analysis. We also excluded cases that occurred
after March 31st, 2023, as the later data is not complete enough.

Moreover, we generalized flock types into Poultry and Non-Poultry. Originally, there were
15 commercial flock types in addition to Poultry and Non-Poultry. However, as defined by the
World Organization for Animal Health (WOAH) on March 8th, 2022, poultry includes ”all birds
reared or kept in captivity for the production of any commercial animal products or for breeding for
this purpose, fighting cocks used for any purpose, and all birds used for restocking supplies of game
or for breeding for this purpose, until they are released from captivity.” Therefore, we categorized
all these 15 commercial flock types as poultry.

After the modification, there are 817 observations and 6 variables in this dataset. It will play
a magnificent role in our future analyses.

Table 2: First and Last 5 Outbreaks in the United States till Mar. 31st 2023 (Backyard and
Commercial)
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State County Year Month Day Type Cases

Indiana Dubois County 2022 02 08 Poultry 29000
Virginia Fauquier County 2022 02 12 Non-Poultry 90
Kentucky Fulton County 2022 02 12 Poultry 231400
Kentucky Webster County 2022 02 15 Poultry 53300
Indiana Dubois County 2022 02 16 Poultry 26600
. . . . . . . . . . . . . . . . . . . . .
Michigan Lapeer County 2023 03 23 Poultry 950
Colorado Arapahoe County 2023 03 24 Non-Poultry 10
Kansas Ellsworth County 2023 03 24 Non-Poultry 50
Colorado Yuma County 2023 03 28 Poultry 310
Oregon Umatilla County 2023 03 30 Non-Poultry 50

Table 2 shows the first and last 5 H5N1 backyard and commercial outbreaks in the United
States till March 31st 2023. We can see that the first outbreak happened on February 8th, 2022 in
Dubois, Indiana with 29,000 cases and its outbreak type was Poultry. The last outbreak happened
on March 30th, 2023 in Umatilla, Oregon with 50 cases and its outbreak type was Non-Poultry.

2.3 H5N1 Bird Flu Detections across the United States (Wild Birds)

This public dataset contains information about detections of highly pathogenic avian influenza
(HPAI) A(H5) viruses in wild birds by county in the United States.

We have also made some modifications to this dataset for future convenience. Similar to the
dataset in section 2.2, we have changed the format of dates and excluded cases that occurred after
March 31st, 2023. We have also changed the column names to match the previous dataset for
future data cleaning and analysis.

After the modification, there are 2,752 observations and 6 variables in this dataset. It is
another dataset that will play a magnificent role in our future analyses.

Note that there are two outbreak types: Wild bird, which means ”an animal that has a phe-
notype unaffected by human selection and lives independently without requiring human supervision
or control (WOAH, 2022),” and Captive wild bird, which means ”an animal that has a pheno-
type not significantly affected by human selection but that is captive or otherwise lives under or
requires human supervision or control (WOAH, 2022).”

Table 3: First and Last 5 Outbreaks in the United States till Mar. 31st 2023 (Wild Birds)

State County Year Month Day Type Cases

North Carolina Hyde County 2022 01 12 Wild bird 2
South Carolina Colleton County 2022 01 13 Wild bird 2
North Carolina Hyde County 2022 01 16 Wild bird 2
North Carolina Hyde County 2022 01 20 Wild bird 3
North Carolina Pamlico County 2022 01 20 Wild bird 34
. . . . . . . . . . . . . . . . . . . . .
Alaska Sitka County 2023 03 31 Wild bird 1
Maryland Harford County 2023 03 31 Wild bird 1
Minnesota Wright County 2023 03 31 Captive wild bird 1
Utah Millard County 2023 03 31 Wild bird 1
Washington Benton County 2023 03 31 Wild bird 1
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Table 3 shows the first and last 5 H5N1 wild bird outbreaks in the United States till March
31st 2023. We can see that the first outbreak happened on January 12th, 2022 in Hyde, North
Carolina with 2 cases and its outbreak type was Wild bird. The last outbreak happened on March
31st, 2023 in Benton, Washington with 1 case and its outbreak type was also Wild bird.

2.4 Monthly Average Temperature of each County across the United States

This dataset is combined from the public datasets provided by the National Centers for Envi-
ronmental Information (NCEI), which provides the average temperature in Fahrenheit degrees (°F)
for all counties, except those in the state of Hawaii, from January 2022 to March 2023, and Cedar
Lake Ventures, Inc., which provides the average temperature in Fahrenheit degrees (°F) for all five
counties in the state of Hawaii from January 2022 to March 2023.

We have changed the formats and column names of state, county, and month for future con-
venience. Additionally, we have corrected some mismatched county names in this dataset based on
dataset in section 2.1. Moreover, since the average temperature data for Hawaii is not available in
any offline format, we have manually filled in those values. We change the months January 2022
to March 2023 to month index from 1 to 15, which makes our future analyses easier.

After the modification, there are 47,160 observations and 4 variables in this dataset. This
dataset provides an important factor in our analysis and prediction model.

Table 4: First 6 Observations of Average Temperature by County in °F across the United States

State County Month Index Average Temperature

AL autauga county 1 45.1
AL baldwin county 1 50.1
AL barbour county 1 45.4
AL bibb county 1 43.2
AL blount county 1 41.6
AL bullock county 1 44.9

2.5 Monthly H5N1 Cases by County from Jan. 2022 to Mar. 2023 in the
United States

This cleaned data is combined and derived from the datasets in 2.1 - 2.4 mentioned above,
which is the major dataset we will use in the rest of this report. There are 188,580 observations
and 10 variables.

• fips: Each FIPS code represents a unique county in the United States, so it is a categorical
variable with 3,143 unique values, each unique value has 60 entries.

• state: Abbreviation of each state in the United States, so it is a categorical variable with 51
unique values, each states has its own number of counties.

• county: The names of counties, independent cities, census areas, and same administrative
level regions in the United States, so it is a categorical variable with 3,143 unique values with
respect to states, each unique value has 60 entries (note that some sates have some counties
with the same name).

• lat: The latitude of each county.

• lng: The longitude of each county.
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• month.index: The order of month of avian influenza outbreak from 1 (January 2022) to
15 (March 2023). Each month.index has 12,572 entries. Every month.index has the same
number of entries because the cleaned dataset contains all counties’ H5N1 situations regardless
of how many cases they have, if there is no case in a county, then the case number is just 0.

• type: The type of outbreak in a specific county and month, so it is a categorical variable with
4 unique values, including poultry (47,145 entries), non-poultry (47,145 entries), wild bird

(47,145 entries), and captive wild bird (47,145 entries). Every type has the same number
of entries because the cleaned dataset contains all counties’ H5N1 situations regardless of how
many cases they have, if there is no case in a county, then the case number is just 0.

• avg.temp: The average temperature in a specific county and month in Fahrenheit degree
(°F).

• cases: The number of H5N1 cases detected in a specific county and month.

• binary.case: If the case of a type of outbreak in a specific county and month is 0, then
it is marked as uninfected (185,907 entries). Otherwise, it is marked as infected (2,673
entries).

It is important to visualize the data to understand the patterns and trends that are present in
the datasets before building models and doing analyses.

Figure 1: New H5N1 Cases each Month by County from Jan. 2022 to Mar. 2023

Figure 1 indicates that as the months went by, there were more new cases of the H5N1 virus.
The majority of the new cases were in the west and midwest regions. There was a fluctuation of
new cases in March, April, May, and from August to the end of the year of 2022. Based on the
colors, new cases did not exceed 1,000,000 in March 2023. Moreover, monthly cases were decreasing
since 2023.

Table 5: Most and Least 5 Monthly Cases by County in the United States from Jan. 2022 to Mar.
2023
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FIPS code State County Month Index Type Cases

19021 IA buena vista county 3 poultry 5486700
19143 IA osceola county 3 poultry 5011700
42071 PA lancaster county 4 poultry 3782700
39039 OH defiance county 9 poultry 3748500
55055 WI jefferson county 3 poultry 2750700
. . . . . . . . . . . . . . . . . .
56039 WY teton county 10 wild bird 1
56039 WY teton county 6 wild bird 1
56039 WY teton county 9 wild bird 1
56043 WY washakie county 13 wild bird 1
56043 WY washakie county 14 wild bird 1

Table 5 shows the most and least 5 monthly cases by county in the United States till March
31st 2023. We can see that the county that has the most monthly cases was Buena Vista, Iowa
with 5,486,700 in March 2022. Its outbreak type is poultry. The 5 counties that has the least
monthly cases are all in Wyoming with only 1 wild bird case each.

Figure 2: Cumulative Cases each Month by County from Jan. 2022 to Mar. 2023

Figure 2 above shows the cumulative cases of the H5N1 virus from January 2022 to March
2023. By the time it was March 2023, most of the United States had cases of this virus. However,
most of the cumulative cases are fewer than 2,000,000.

Table 6: Most and Least 5 Cumulative Cases by County in the United States till March 31st 2023
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FIPS code State County Cases

8123 CO weld county 6188790
19021 IA buena vista county 5606301
19143 IA osceola county 5011700
42071 PA lancaster county 3855188
39039 OH defiance county 3748500
. . . . . . . . . . . .
55127 WI walworth county 1
55135 WI waupaca county 1
56003 WY big horn county 1
56037 WY sweetwater county 1
56043 WY washakie county 1

Table 6 shows the most and least 5 cumulative cases by county in the United States till March
31st 2023. We can see that the county has the most cumulative cases is Weld, Colorado with
6,188,790 cases. Notice that Buena Vista and Osceola in Iowa also have a lot of cumulative cases,
5,606,301 and 5,011,700 respectively. The counties have the least 5 cumulative cases are all in
Wisconsin and Wyoming with only 1 case each.

Figure 3: Scatterplot Matrix

In figure 3, the x-axis represents the variables of the columns and the y-axis represents the
variables of the rows.
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Among the numerical variables, latitude and longitude have the highest correlation. The
correlation of -0.407 indicates that these two variables have a moderate negative relationship with
each other. When the latitude is between 35 and 45, there is a surge in cases. Meanwhile, when
longitude is between -120 and -70, cases increase dramatically. They indicate the locations in the
United States that have a larger number of cases.

In addition, we can notice that the correlation between average temperature and latitude is -
0.372, which makes sense, as the latitude increases (close to the north pole) the average temperature
decreases.

The type variable shows that most of the H5N1 cases in the dataset are wild birds.
Furthermore, the cases variable indicates that there are not a lot of cases in each outbreak,

yet there are many outliers. Possible reasons for this are that although wild birds make up most of
the dataset, poultry are in large groups while wild birds are not. Since viruses spread more easily
through close contact, most of the cases are poultry.

Another interesting phenomenon is shown in the scatterplot as x-axis is avg.temp y-axis is
cases. Seems the distribution of cases against average temperature looks like a normal distribution.
Moreover, there seems to have larger cases when the average temperature is between 30 and 60
degrees Fahrenheit.

Figure 4: Bar Chart of New H5N1 Cases Each Month

The bar chart as figure 4 shown above indicates the H5N1 cases happened each month. As
we can see, March 2022 has the most cases, recall that Buena Vista county, Iowa had the highest
monthly cases in table 5. Since 2023, the H5N1 cases became less and less.

3 Methods

Figure 5 below is a flowchart that shows our general approaches and steps to build, evaluate,
and select a model that performs the best in predicting which counties may have H5N1 outbreak(s)
in the upcoming month.

Figure 5: Flowchart of Steps and Approaches
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We use the outbreaks from January 2022 to February 2023 as our training set, which has
176,008 observations. Moreover, we let the outbreaks happened in March 2023 as the testing
set, which has 12,572 observations. The testing set will tell us how well our model performs on
predicting which county will have H5N1 cases.

Our model is

Y =β0 + β1Xlat + β2Xlng + β3Xmonth.index + β4Xtype(non-poultry)

+ β5Xtype(poultry) + β6Xtype(wild bird) + β7Xavg.temp + β8Xlat * lng,
(1)

where β0 is the intercept of the model, β1 to β8 are the coefficients of explanatory variables
Xlat to Xlat * lng.

Moreover, we need to use the sigmoid function

p(X) =
1

1 + e−Xβ
,

where

X =


1 X1 lat X1 lng . . . X1 lat * lng

1 X2 lat X2 lng . . . X2 lat * lng
...

...
...

. . .
...

1 X176008 lat X176008 lng . . . X176008 lat * lng


176008×9

,β =


β0
β1
...
β8


9×1

.

The sigmoid function guarantees that the predicted probability is in the range (0, 1) and hence
allows us to obtain a sensible prediction.

Because this model determines whether a county will have H5N1 case(s) based on each outbreak
type, so it is a binary classifier.

Since the result is either ‘infected‘ or ‘uninfected‘, so for each observation, its distribution is a
Bernoulli Distribution

Bern(p).
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Since we have 176,008 observations in the training set, the distribution of Y should be a
Binomial Distribution

Binomial(176008, p).

p is the probability of a county, based on each outbreak type, to have H5N1 case(s), which will
be obtained by performing the model with the sigmoid function described above.

Now let us start building models to predict potential H5N1 outbreak(s) in the future.

3.1 Logistic Regression Model

3.1.1 Modeling

We decided to use logistic regression to model our data with the response variable as to whether
a specific county will get infected by avian influenza.

The log-likelihood function for logistic regression is

ℓ(β) =

n∑
i=1

Yi log(p(Xi)) + (1− Yi) log(1− p(Xi)), n = 176, 008.

In order to estimate the parameters of the logistic regression model, we will apply the method
of Maximum Likelihood Estimate (MLE), which solves the objective function

β̂ = argmax
β

[ n∑
i=1

Yi log(p(Xi)) + (1− Yi) log(1− p(Xi))
]
, n = 176, 008.

By performing the logistic regression with the MLE method, we get our estimated coefficients,
rounded to five decimals, as table 7 shown below.

Table 7: Estimated Coefficients Generated by Logistic Regression Model

Coefficient Estimation

β̂0 18.21486

β̂1 -0.2842

β̂2 0.0804

β̂3 -0.05675

β̂4 -0.20253

β̂5 -0.05453

β̂6 -1.99719

β̂7 -0.00434

β̂8 -0.00172

As a result, our predicted model is (coefficients rounded to three decimal places)

Ŷ =18.215− 0.284Xlat + 0.08Xlng − 0.057Xmonth.index − 0.203Xtype(non-poultry)

− 0.055Xtype(poultry) − 1.997Xtype(wild bird) − 0.004Xavg.temp − 0.002Xlat * lng.
(2)
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3.1.2 Interpretation

The coefficient for lat (-0.2842) indicates that a one-unit increase in latitude is associated
with a negative change in probability that lat multiple by 0.7526161, holding all other predictor
variables constant.

The coefficient for lng (0.0804) indicates that a one-unit increase in longitude is associated
with a positive change in probability that lng multiplies by 1.0837205, holding all other predictor
variables constant.

The coefficient for month.index (-0.05675) indicates that a one-unit increase in month.index

(which represents the month of the year) is associated with a negative change in probability that
month multiplies by 0.9448302, holding all other predictor variables constant.

The coefficient for each type of outbreak (poultry, non-poultry, wild bird) represents the
difference in log odds of the outcome compared to the reference category (in this case, wild bird).
The coefficient for non-poultry (-0.20253) indicates that non-poultry animals are 0.816662 times
less likely than the wild bird, holding all other predictor variables constant.

The coefficient for avg.temp (-0.00434) indicates that a one-unit increase in average tempera-
ture is associated with a negative change in the log odds of the outcome by 0.9956694, holding all
other predictor variables constant.

The coefficient for the interaction term lat * lng (-0.00172) indicates that the effect of lat-
itude on the log odds of the outcome depends on the value of longitude. Specifically, a one-unit
increase in latitude is associated with a negative change in the log odds of the outcome by 0.9982815
units for each one-unit increase in longitude.

Overall, this logistic regression model can be used to predict the probability of the binary
outcome based on the values of the predictor variables included in the model. The estimated
coefficients can also be used to interpret the effects of each predictor variable on the log odds of
the outcome, holding all other predictor variables constant.

3.2 Ridge Regression Model for Classification

3.2.1 Modeling

In this section, we will try the ridge regression model for classification. Ridge regression
attempt to solve the objective function

β̂ridge = argmax
β

[
ℓ(β) + λ

n∑
i=1

β2
i

]
, n = 176, 008.

where ℓ(β) is the loss function of the original logistic regression model, λ
∑n

i=1 β
2
i is the penalty

term. λ is called the penalty parameter and λ ∈ [0,∞).
Since we need to find λ to do the ridge regression model, we first use a 10-fold cross validation

to find out the λ that yields the smallest deviance

CV(10) =
1

10

n∑
i=1

d2i =
1

10

n∑
i=1

2

[
Yi log

(
Yi

p(X)

)
+ (1− Yi) log

(
1− Yi

1− p(X)

)]
, n = 176, 008.

Figure 6 below shows different deviances when using different λ’s. The dashline on the left
side indicates the λ (0.0014659) producing the smallest deviance (0.1365223).

The dashline on the right side of the first one indicates the largest λ (0.0071283) at which the
deviance is within one standard error of the smallest deviance.
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Figure 6: 10-Fold Cross Validation for Proper λ in Ridge Regression Model

After performing the 10-fold cross validation and getting the value of λ we want, we can start
building the ridge regression model for classification, which gives us the estimated coefficients as
shown below in table 8.

Table 8: Estimated Coefficients Generated by Ridge Regression Model

Coefficient Estimation

β̂0 9.09331

β̂1 -0.08512

β̂2 0.0063

β̂3 -0.04842

β̂4 0.0434

β̂5 0.16787

β̂6 -1.69266

β̂7 -0.00105

β̂8 −6× 10−5

As a result, our predicted model becomes (coefficients rounded to three decimal places)

Ŷ =9.093− 0.085Xlat + 0.006Xlng − 0.048Xmonth.index + 0.043Xtype(non-poultry)

+ 0.168Xtype(poultry) − 1.693Xtype(wild bird) − 0.001Xavg.temp − 6× 10−5Xlat * lng.
(3)

3.2.2 Interpretation

The coefficient for lat (-0.08512) indicates that a one-unit increase in latitude is associated
with a negative change in probability that lat multiple by 0.9184021, holding all other predictor
variables constant.

The coefficient for lng (0.0063) indicates that a one-unit increase in longitude is associated
with a positive change in probability that lng multiplies by 1.0063199, holding all other predictor
variables constant.
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The coefficient for month.index (-0.04842) indicates that a one-unit increase in month.index

(which represents the month of the year) is associated with a negative change in probability that
month multiplies by 0.9527336, holding all other predictor variables constant.

The coefficient for each type of outbreak (poultry, non-poultry, wild bird) represents the
difference in log odds of the outcome compared to the reference category (in this case, wild bird).
The coefficient for non-poultry (0.0434) indicates that non-poultry animals are 1.0443556 times
more likely than the wild birds, holding all other predictor variables constant.

The coefficient for avg.temp (-0.00105) indicates that a one-unit increase in average tempera-
ture is associated with a negative change in the log odds of the outcome by 0.9989506, holding all
other predictor variables constant.

The coefficient for the interaction term lat * lng (−6 × 10−5) indicates that the effect of
latitude on the log odds of the outcome depends on the value of longitude. Specifically, a one-unit
increase in latitude is associated with a negative change in the log odds of the outcome by 0.99994
units for each one-unit increase in longitude.

3.3 Lasso Regression Model for Classification

3.3.1 Modeling

In this section, we will try the lasso regression model for classification. Lasso regression attempt
to solve the objective function

β̂lasso = argmax
β

[
ℓ(β) + λ

n∑
i=1

|βi|
]
, n = 176, 008.

where ℓ(β) is the loss function of the original logistic regression model, λ
∑n

i=1 |βi| is the penalty
term. λ is called the penalty parameter and λ ∈ [0,∞).

Since we need to find λ to do the ridge regression model, we first use a 10-fold cross validation
to find out the λ that yields the smallest deviance

CV(10) =
1

10

n∑
i=1

d2i =
1

10

n∑
i=1

2

[
Yi log

(
Yi

p(X)

)
+ (1− Yi) log

(
1− Yi

1− p(X)

)]
, n = 176, 008.

Figure 10 below shows different deviances when using different λ’s. The dashline on the left
side indicates the λ (1.807284× 10−5) producing the smallest deviance (0.1355127).

The dashline on the right side of the first one indicates the largest λ (0.0025029) at which the
deviance is within one standard error of the smallest deviance.

Figure 7: Cross Validation for Proper λ in Lasso Regression Model
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After performing the 10-fold cross validation and getting the value of λ we want, we can start
building the lasso regression model for classification, which gives us the estimated coefficients as
shown below in table 9.

Table 9: Estimated Coefficients Generated by Lasso Regression Model

Coefficient Estimation

β̂0 17.38428

β̂1 -0.2659

β̂2 0.07337

β̂3 -0.05613

β̂4 -0.18213

β̂5 -0.03353

β̂6 -1.97957

β̂7 -0.00408

β̂8 -0.00157

As a result, our predicted model becomes (coefficients rounded to three decimal places)

Ŷ =17.384− 0.266Xlat + 0.073Xlng − 0.056Xmonth.index − 0.182Xtype(non-poultry)

− 0.034Xtype(poultry) − 1.98Xtype(wild bird) − 0.004Xavg.temp − 0.002Xlat * lng.
(4)

3.3.2 Interpretation

The coefficient for lat (-0.2659) indicates that a one-unit increase in latitude is associated
with a negative change in probability that lat multiple by 0.7665158, holding all other predictor
variables constant.

The coefficient for lng (0.07337) indicates that a one-unit increase in longitude is associated
with a positive change in probability that lng multiplies by 1.0761286, holding all other predictor
variables constant.
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The coefficient for month.index (-0.05613) indicates that a one-unit increase in month.index

(which represents the month of the year) is associated with a negative change in probability that
month multiplies by 0.9454162, holding all other predictor variables constant.

The coefficient for each type of outbreak (poultry, non-poultry, wild bird) represents the
difference in log odds of the outcome compared to the reference category (in this case, wild bird).
The coefficient for non-poultry (-0.18213) indicates that non-poultry animals are 0.833493 times
less likely than the wild birds, holding all other predictor variables constant.

The coefficient for avg.temp (-0.00408) indicates that a one-unit increase in average tempera-
ture is associated with a negative change in the log odds of the outcome by 0.9959283, holding all
other predictor variables constant.

The coefficient for the interaction term lat * lng (-0.00157) indicates that the effect of lat-
itude on the log odds of the outcome depends on the value of longitude. Specifically, a one-unit
increase in latitude is associated with a negative change in the log odds of the outcome by 0.9984312
units for each one-unit increase in longitude.

3.4 Ridge & Lasso Regression Model for Classification

3.4.1 Modeling

In this section, we will try to use the combination of ridge and lasso regression model for
classification. The Ridge & Lasso regression attempt to solve the objective function

β̂ridge & lasso = argmax
β

[
ℓ(β) + λ

(1
2

n∑
i=1

|βi|+
1

2

n∑
i=1

β2
i

)]
, n = 176, 008.

where ℓ(β) is the loss function of the original logistic regression model, λ
(
1
2

∑n
i=1 |βi| +

1
2

∑n
i=1 β

2
i

)
is the penalty term. λ is called the penalty parameter and λ ∈ [0,∞).

Since we need to find λ to do the ridge & lasso regression model, we first use a 10-fold cross
validation to find out the λ that yields the smallest deviance

CV(10) =
1

10

n∑
i=1

d2i =
1

10

n∑
i=1

2

[
Yi log

(
Yi

p(X)

)
+ (1− Yi) log

(
1− Yi

1− p(X)

)]
, n = 176, 008.

Figure 11 below shows different deviances when using different λ’s. The dashline on the left
side indicates the λ (1.7172127× 10−5) producing the smallest deviance (0.1355458).

The dashline on the right side of the first one indicates the largest λ (0.0041559) at which the
deviance is within one standard error of the smallest deviance.

Figure 8: Cross Validation for Proper λ in Ridge & Lasso Regression Model
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After performing the 10-fold cross validation and getting the value of λ we want, we can
start building the ridge & lasso regression model for classification, which gives us the estimated
coefficients as shown below in table 10.

Table 10: Estimated Coefficients Generated by Ridge & Lasso Regression Model

Coefficient Estimation

β̂0 17.34946

β̂1 -0.26485

β̂2 0.07299

β̂3 -0.05629

β̂4 -0.19021

β̂5 -0.04208

β̂6 -1.98563

β̂7 -0.00411

β̂8 -0.00156

As a result, our predicted model becomes (coefficients rounded to three decimal places)

Ŷ =17.349− 0.265Xlat + 0.073Xlng − 0.056Xmonth.index − 0.19Xtype(non-poultry)

− 0.042Xtype(poultry) − 1.986Xtype(wild bird) − 0.004Xavg.temp − 0.002Xlat * lng.
(5)

3.4.2 Interpretation

The coefficient for lat (-0.26485) indicates that a one-unit increase in latitude is associated
with a negative change in probability that lat multiple by 0.767321, holding all other predictor
variables constant.

The coefficient for lng (0.07299) indicates that a one-unit increase in longitude is associated
with a positive change in probability that lng multiplies by 1.0757198, holding all other predictor
variables constant.
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The coefficient for month.index (-0.05629) indicates that a one-unit increase in month.index

(which represents the month of the year) is associated with a negative change in probability that
month multiplies by 0.945265, holding all other predictor variables constant.

The coefficient for each type of outbreak (poultry, non-poultry, wild bird) represents the
difference in log odds of the outcome compared to the reference category (in this case, wild bird).
The coefficient for non-poultry (-0.19021) indicates that non-poultry animals are 0.8267855 times
less likely than the wild birds, holding all other predictor variables constant.

The coefficient for avg.temp (-0.00411) indicates that a one-unit increase in average tempera-
ture is associated with a negative change in the log odds of the outcome by 0.9958984, holding all
other predictor variables constant.

The coefficient for the interaction term lat * lng (-0.00156) indicates that the effect of lat-
itude on the log odds of the outcome depends on the value of longitude. Specifically, a one-unit
increase in latitude is associated with a negative change in the log odds of the outcome by 0.9984412
units for each one-unit increase in longitude.

4 Results

Now we have four models to determine whether a county will have a specific type of outbreak
in the future, which are logistics regression model, ridge regression model for classification, lasso
regression model for classification, and ridge & lasso regression model for classification. One of the
best ways to see how these model performs is to use the testing set to see the accuracy of their
predictions.

We apply the testing set, which are the cases happened in March 2023, into our four models
and find out that all the models produce the exact same result with the threshold probability
of infected being 0.5 (i.e. when the predicted probability is larger than 0.5, it is classified as
infected, otherwise uninfected).

These models indicate that all counties are uninfected. The confusion matrix is shown as table
11 below, which represents the counts of all combination of values between the predicted label and
the true label.

Table 11: Confusion Matrix of the Test Set

Predicted / True Infected Uninfected

Uninfected 82 12490

By looking at the confusion matrix, we get error rate equals to 82
12572 = 0.00652, and the

accuracy equals to 1− 82
12572 = 0.99348, which means that most of the cases, 99.348%, are correctly

classified.
Although the accuracy is very high, but that is not what we really want because all these

models classify all the 3,143 counties as uninfected in March 2023, whereas there were 82 counties
had outbreaks, which cannot bring us any useful information and may bring risks to public health.

In order to know which model performs better, we use Receiver Operating Characteristic
(ROC) curve, which tests the goodness of fit, and compare the Area Under the Curve (AUC). The
range of AUC is (0, 1), where higher AUC means the classifier is better. Figure 9 below shows the
ROC curves and AUC of logistic regression, ridge regression, lasso regression, and ridge & lasso
regression models for classification.

Figure 9: ROC Curves of All Four Models
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We can see the all ROC curves look smooth and goes to the left corner, meaning that our
classifier works good. By obtaining the value of AUC’s, which are 0.7954570 for logistic regression
model, 0.7957419 for ridge regression model, 0.7959315 for lasso regression model, and 0.7959950
for ridge & lasso regression model, indicating that most counties are correctly classified as infected
and uninfected. Our detection of H5N1 looks good.

Moreover, since the AUC for the ridge & lasso regression model is the highest, although the
difference is not very large, we still consider the ridge & lasso regression model for classification
works the best among all the four models. Figure 10 is a map, which plots out the sum of predicted
probabilities of all four possible H5N1 outbreak types (poultry, non-poultry, wild bird, and
captive wild bird) of all counties in March 2023 calculated by the lasso regression model. Note
that redder color means higher risk to have an outbreak. We can interpret the sum of probability
of four types of a county as its risk index, with range [0, 4], of having an outbreak.

Figure 10: Map of Risk Index Generated by Ridge & Lasso Regression Model

As we can see from figure 10, seem the counties in the south are less likely to have outbreaks
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of H5N1 in March, but those counties in the north and west are more risky. This actually makes
sense if we compare with figure 1, specifically the new cases in March 2023.

5 Conclusion and Suggestion

In conclusion, we have developed four models, logistic regression, ridge regression, lasso regres-
sion, and ridge & lasso regression, to predict the likelihood of H5N1 outbreaks in different counties
of the United States. The models were trained using historical data from January 2022 to February
2023, and the results showed that all models had a high accuracy in predicting the occurrence of
H5N1 outbreaks in March 2023, which is about 99.348%. However, the models failed to predict
the occurrence of 82 H5N1 outbreaks in March 2023, if we set the threshold of infected to be 0.5,
which highlights a limitation in our current models.

Our analyses show that the ridge & lasso regression model performed the best among the four
models, with an AUC of 0.7959950. The map generated based on the ridge & lasso regression model
indicated that counties in the north and west were at a higher risk of having H5N1 outbreaks in
March 2023, which matches the actual result.

Despite the high accuracy of our models, there are still some limitations that need to be
addressed. One limitation is that our models only considered the effects of temperature, outbreak
types, time, and density on the likelihood of H5N1 outbreaks, but there may be other factors that
also affect the spread of the virus, such as migration patterns of birds, human movement, egg
production, breeding size, and so on. In addition, the models were based on historical data, and
the emergence of new H5N1 strains may lead to changes in the spread of the virus that are not
accounted for in our models.

To improve our models, we could incorporate additional data sources such as bird migration
patterns, human travel data, egg production, breeding size, and so on. We could also use more
sophisticated machine learning techniques such as convolutional neural network (CNN) and long
short-term memory networks (LSTM) to capture more complex relationships between different
variables. We suggest the USDA and CDC to make more detailed data collections, including these
factors described above.

In terms of controlling the spread of H5N1, there are several measures that can be taken.
Implement strict biosecurity measures in poultry farms: Clean and disinfect regularly, limit

farm access, and separate sick birds. Maintain cleanliness, limit property access, and handle dead
birds properly. Buy healthy birds from reputable sources, keep them separate, sanitize equipment,
and report sick birds promptly (Canadian Food Inspection Agency, 2013).

Practice good hygiene habits for chicken farmers: Wear masks and work clothes, clean and
disinfect clothes, wash hands after contact with dirt, and use gloves when handling chicken farm
manure. Minimize contact during an epidemic and use protective gear when handling poultry
(Canadian Food Inspection Agency, 2012).

Establish surveillance programs: Monitor virus spread in wild birds and poultry farms to detect
outbreaks early and prevent further transmission. Stay vigilant, observe signs of illness or distress,
and report sick birds promptly to appropriate authorities (CDC, 2022).

Launch public education campaigns: Raise awareness about H5N1 risks and educate people
on preventive measures. Enhancing knowledge can help prevent virus transmission.

Coordinate national and international efforts: Collaborate to track and contain the virus by
sharing information and resources across countries. Joint efforts are crucial for effective control.

By implementing these measures, we can help control the spread of H5N1 and prevent future
outbreaks.
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