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ABSTRACT

Today, climate change is one of the most substantial issues in the world. Therefore, annual temperature
anomalies are the problem we are concerned about, since anomalies are how we see how the climate
changes. Our data set is about the annual temperature anomalies (1850–2021) for the northern
hemisphere [1]. A temperature anomaly means a deviation from a reference value or long-term
average. The data set contains two columns which are Year and Temperature Anomalies. Based on
our knowledge of time series, we want to predict the trend of Temperature Anomalies in the future.
As we know, a sequence captured at successive, equally spaced points in time is referred to as a time
series. Since Temperature Anomalies are taken over time, which is Years, it is a time series.
Because of prior climatic history and its effects on humans, we believe that it is vital to analyze and
forecast future anomalies. To better prepare and safeguard the environment, it is crucial to anticipate
what these potential future anomalies might be. People can then prepare to mitigate it based on how
severe it is.

1 Introduction

There are two methods we are going to use to forecast future temperature anomalies: 1) the ARIMA model on stationary
data, and 2) Estimating the trend and forecasting the rough part. For the second method, we will use the formula
Yt = mt(trend) +Xt(rough) to make our predictions.

For the first method, we are going to use the stationary data to get the preliminary analysis of the ARIMA model by
ACF plot and PACF plot, then use the AICc criterion to define our final ARIMA model and diagnose our residuals and
their properties. Also, we are going to use the Box-Ljung test to test if our residuals are identically and individually
distributed. Finally, we will use the data from 1850-2015 to predict 2016-2021 by the final ARIMA model.

For the second method, we are going to find our prediction of the trend and rough part first. To get the trend, we will
use the spline trend method from the year 1850-2015 temperature anomalies, then use the approxExtrap function on our
data from the years 2016-2021. To predict our rough part from years 2016-2021, we will first use our observations to
subtract trends to get our rough part from years 1850-2015. Then, we will get the preliminary analysis of the ARIMA
model by ACF plot and PACF plot. After, we will use the AICc criteria to define the final ARIMA model of our rough
part. Next, we will use the rough part from 1850-2015 to predict the rough part from 2016-2021 by the final ARIMA
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model. Lastly, we will add our trend and rough part from 1850-2015 together to get our prediction of observations from
the years 2016-2021.

In the end, we will get our conclusion by visualizing these two methods of prediction points and comparing them with
real observations to see which method is better, more accurate, or more reasonable.

2 Research Statments

To properly analyze our dataset, we decided to base our research project on the following questions:
- Which method is best for forecasting future temperature anomalies?
- What is the relationship between Temperature Anomalies and Year?

3 Method I — ARIMA modeling

3.1 Data Visualization

Before applying the methods we are going to use, we first check if our series plot is stationary. A time series model is
not stationary if it has a trend or seasonal effects. Therefore, we first check the series of observations to determine if
it has a trend. From the plot of annual temperature anomalies above, we find that it is not stationary. To understand
the nature of variation in the data, we plot the series of Temperature Anomalies. The plot above shows the annual
temperature anomalies data from the year 1850 to 2020. We can observe that there is a clear trend where Temperature
Anomalies increased from 1900 to 2020 and Temperature Anomalies became positive, which means it became warmer
over time. Also, the temperature anomalies data does not clearly have seasonality since this plot shows there are no
regular and predictable changes that recur every year. The average temperature anomaly from 1850 to 2021 is negative
which is -0.03455814 and the median is -0.124. We also get our histogram of the temperature anomaly, the distribution
of temperature anomaly is right skewed which tells us the mean of average temperature anomaly is greater than the
median of temperature anomaly. The average temperature anomaly is overestimating the most common values in a
positively skewed distribution.
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Since subsequent analyses such as modeling are done on stationary series, we need to take the difference of the series
to achieve stationarity, which the first differenced series plot shows. After taking the first difference, the trend seems
to be gone. As a matter of fact, the series looks stationary as seen above in the plot and the mean of the series looks
constant because it fluctuates about zero. Our original series increased temperature as time increased, while the first
difference series stayed constant as time increased. Now, we can continue by performing subsequent analyses of the
ARIMA model Methodology and Diagnostics.

3.2 ARIMA model Methodology and Diagnostics

3.2.1 Preliminary Identification — AR(3) or MA(1)

Next, we want to obtain the appropriate ACF and PACF plots and use these to make a preliminary identification of a
time series model. From the ACF and PACF plots after the first difference in the Temperature Anomalies data(yd1)
above, we get our preliminary identification of time series models as AR(3) and MA(1) because the ACF plot cuts off
after significant lag at 1 so we choose MA(1), while the PACF plot cuts off after a significant lag of 3 so we choose
AR(3). Based on this, it seems like the best model according to the ACF plot is MA(1), while for the PACF plot it is
AR(3). Since both of the plots show that the larger orders are insignificant, we can use the AR(3) or MA(1) based on
our preliminary results.

By checking the residuals through the top left plot, we can see how good the model fit is. This plot shows constant
variance and constant mean because it fluctuates around zero.
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We examine the residuals by the ACF plot on the top right, and we find that the residuals from the ARIMA model are
identically and individually distributed because the ACF plot shows that none of the lags are significant.

The last property we need to check is the normality assumption. The QQ plot of the residuals on the bottom left shows
that they are normally distributed because it follows the fitted line.

Finally, the histogram of residuals on the bottom right is bell-shaped, which further confirms and gives strong evidence
that our residuals follow a normal distribution.

χ2 Degree of Freedom p-value

6.591 10 0.7634
Table 1: Box-Ljung Test Results

To determine if our residuals are independent and identically distributed, we use the Box-Ljung test. From the table
above, our P-value is 0.7634, which is very large. This means we cannot reject the assumption of independent and
identically distributed residuals. Therefore, we conclude our model residuals are identical and individually distributed,
and have strong evidence that our model fits well.

3.2.2 Model Selection — AICc

Next, we want to select the final model using the model selection criterion AICc. We want to use AICc instead of AIC
because using AICc gives a more accurate answer for smaller samples while giving the same answer as AIC for larger
samples. It may be enough to consider the following 16 models. Here is a table with values of the criterion function
below.

MA(0) MA(1) MA(2) MA(3)
AR(0) -0.9228030 -1.093587 -1.119037 -1.106939
AR(1) -0.9918207 -1.113262 -1.106827 -1.107563
AR(2) -1.0447157 -1.113521 -1.110429 -1.111585
AR(3) -1.1219870 -1.114391 -1.107756 -1.099317

Table 2: AICc values for AR(0–3) and MA(0–3).

From the AICc criterion table, MA(0) and AR(3) are the best models with the first difference because through the AICc
we have ARIMA(3,1,0). By looking at our AICc criterion values, we find that the smallest value is -1.1219867, which
means that our final and best model is ARIMA(3,1,0).

For coding, we use sarima instead of arima because sarima does not assume that the mean is zero, unlike arima. This
means it is better to use since even if the mean is close to zero, it should not be taken as zero. Furthermore, since it takes
seasonality into account, it deals with more complex data better. So although our dataset does not have seasonality, we
chose to use the sarima function after taking the above reasons into consideration. Thus, we use the sarima function to
fit our model.

The estimated parameters and the standard errors are given in the following table. These estimated parameters are
important because they are our estimated Φi, Φ1, Φ2, Φ3, which we plug into the above equation. It gives us an
estimated model of our chosen model. The standard errors are important since we can determine how accurate the
coefficients are.

Φ1 Φ2 Φ3 mean()

Coefficients -0.4234 -0.3557 -0.2947 0.0085
Standard Error 0.0735 0.0756 0.0735 0.0050

Table 3: Estimated parameters and standard errors for ARIMA(3,1,0) model.

ARIMA(3,1,0) Model Expression:

Xt = ϕ0 + ϕ1 Xt−1 + ϕ2 Xt−2 + ϕ3 Xt−3 + ϵt,

where ϕ0 = µ
(
1 − ϕ1 − ϕ2 − ϕ3

)
.
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With a first difference:
Xt = Yt − Yt−1, Xt−1 = Yt−1 − Yt−2, Xt−2 = Yt−2 − Yt−3, Xt−3 = Yt−3 − Yt−4

Final model expression with estimated parameters:
X̂t = 0.0176256 − 0.4234 X̂t−1 − 0.3557 X̂t−2 − 0.2947 X̂t−3.

3.2.3 Diagnostics of Residuals

Next, we perform diagnostics on the residuals of the final model ARIMA(3, 1, 0).

By checking the residuals through the top left plot, we can see how good the model fit is. This plot shows constant
variance and constant mean because it fluctuates around zero.

Next, we examine the residuals by the ACF plot on the top right, and we find that the residuals from the ARIMA model
are independent and identically distributed because the ACF plot shows that none of the lags are significant.

The last property we need to check is the normality assumption. The QQ plot of the residuals on the bottom left shows
that they are normally distributed because it follows the fitted line.

Finally, the histogram of residuals on the bottom right is bell-shaped, which further confirms and gives strong evidence
that our residuals follow a normal distribution.

chi2 Degree of Freedom p-value

7.1741 10 0.7089
Table 4: Box-Ljung Test Results

To diagnose if the residuals of our model are independent and identically distributed, we use the Box-Ljung test. From
the table above, our P-value is 0.7089, which is very large. This means we cannot reject the assumption of independent
and identical residuals. Therefore, we conclude our model residuals are identical and individually distributed, and we
have strong evidence that our model fits well.

3.3 Method I Results

Finally, we refit the final model by sarima.for function (we use AR and MA orders of the final model which is
ARIMA(3,1,0), but not the parameter estimates) using all the data except for the last 6 years and use this model to
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Year Forecasted (ARIMA) Forecasted (SARIMA) Observed

2016 0.9931122 1.0064209 1.255
2017 0.9391939 0.9612019 1.115
2018 0.9459326 0.9760345 0.960
2019 1.0004318 1.0384229 1.144
2020 0.9901110 1.0358330 1.276
2021 0.9740973 1.0274494 1.078

Table 5: Forecasted and Observed Temperature Anomalies (2016-2021)

forecast temperature anomalies for the last 6 years. We plot the available observed and the forecasted values against
time (6 years) on the same graph.

The right plot is plotting observed and forecasted in the same graph from the year 2016 to 2021. As you can see, the
prediction points and observations are pretty close to each other which reflects our ARIMA(3,1,0) model is a good fit.
The forecasted is around the observed, but lower and more constant.

The left plot shows true vs fitted observations. It predicts what the true observations will be from 2016 to 2021. These
predictions are given in the blue confidence interval which means an approximate 95% prediction interval. The way to
get the prediction interval is to use the predicted values plus and minus the value of 1.95 multiplied by the standard
errors for each predictor. As we can see, the blue confidence band area fully encompasses the true observed values,
further confirming that our model is a good fit which means our prediction ARIMA model is good at predicting.

Also, from the table shown above, we can see the observed and the predicted values for the year 2016-2021 are quite
similar which also implies that our ARIMA model predicts well. The table also shows the difference in predicted values
from the sarima and arima functions. The sarima function is more accurate than the arima, which confirms why we
used the sarima function in our code to make our ARIMA model.
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4 Method II — Trend and Rough Forecasting

We are going to apply the formula of ( Obs = trend + rough). If we want to forecast observations from Y2016 to Y2021,
we first need to predict the trend part which is m2016 to m2021 and then we predict the rough part which is X2016 to
X2021. After getting both the prediction of the trend and rough parts from 2016 to 2021, we can add them together to
get our prediction of observations from Y2016 to Y2021.

4.1 Estimation and Forecasting Trend

First, we use the spline method to estimate the trend from our Temperature Anomalies from the years 1850 - 2015. The
graph above, Temp series with spline trends(1850-2015), goes from 1850 to 2015. It does not include the last 6 years of
our dataset. We start from time zero, which represents our first year, 1850. The red line is an estimate of the trend using
the spline method.

The R2 of the spline trend we find is .89997913 which means that our model explains 89.997913% of the variance in
our observations can be explained by the trend. In other words, the trend fits our observations very well.

4.1.1 Diagnostics of Residuals

chi2 Degree of Freedom p-value

17.706 10 0.06013
Table 6: Box-Ljung Test Results

By checking the residuals through the top left plot, we can see how good the model fit is. This plot shows constant
variance and constant mean because it fluctuates around zero.

Next, we examine the residuals by the ACF plot on the top right, and we find that it is hard to determine if the residuals
are independent and identically distributed since lag 1 and lag 13 are significant. Therefore, we decided to use the
box-ljung test, which is shown in the table above. The p-value is larger than the usual alpha of 0.05, so therefore we
conclude our model residuals are identical and individually distributed, and we have strong evidence that our model fits
well.

The last property we need to check is the normality assumption. The QQ plot of the residuals on the bottom left shows
that they are normally distributed because it follows the fitted line except there are two outliers which are located at 13
and 29.

Finally, the histogram of residuals on the bottom right is bell-shaped, which further confirms and gives strong evidence
that our residuals follow a normal distribution.
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4.1.2 Trend Forecasting

The graph on the left, Temp series with spline trends, includes the years 1850 to 2015 which is the red line, and also
includes the last 6 years(2016 -2021) that we guess by using the approxExtrap function, which is our blue line.

The graph on the right just looks at the last six years, 2016 to 2021, from the previous graph on the top right. We take
a closer look at these last six points to better observe the fitted versus observed line and how well the spline method
estimates the actual observations. The spline trend values from 2016 to 2021 are 0.9383427, 0.9537709, 0.9691991,
0.9846274, 1.0000556, and 1.0154839.

Both of the graphs include the guess and actual observed values of the Temperature Anomalies Series.
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4.2 Estimating and Forecasting of Rough Part

First, we get our rough estimate by using the Temperature Anomalies observations to subtract the trend of Temperature
Anomalies from the years 1850 to 2015. As you can see, the rough part of the Temperature Anomalies is already
stationary.

Both the histogram and the normal probability plots are given above, we can see that our histogram of the rough part
is normally distributed and the QQ plot of the residuals on the bottom left shows that they are normally distributed
because it follows the fitted line.

4.2.1 Preliminary Identification of Rough Part

Next, we want to obtain the appropriate ACF and PACF plots, and use these to make a preliminary identification of the
rough. Since our rough part is always stationary, we don’t need to take the first difference. From the ACF and PACF
plots, we can get our preliminary identification of the rough part as MA(1) and AR(1) because the ACF plot and PACF
plot show that all lag orders above one are insignificant. Therefore, we can use MA(1) and AR(1) as our preliminary
identification.

9
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4.2.2 Model Selection Rough Part — AICc

Next, we want to select the final model using the model selection criterion AICc. It may be enough to consider the
following 16 models. Here is a table with values of the criterion function below.

MA(0) MA(1) MA(2) MA(3)

AR(0) -1.350098 -1.402409 -1.390188 -1.405467
AR(1) -1.395323 -1.390030 -1.390864 -1.476548
AR(2) -1.397435 -1.485000 -1.393911 -1.468015
AR(3) -1.394342 -1.389045 -1.468693 -1.455545

Table 7: AICc values for different ARMA model configurations

From the table, MA(1) and AR(2) are the best models. By looking at our AICc criterion values, we find that the smallest
value is -1.485, which means that our final and best model is ARIMA(2,0,1).

Φ1 Φ2 θ1 mean()

Coefficients 1.1433 -0.3303 -1.000 -0.0001
Standard Error 0.0735 0.0737 0.0157 0.0009

Table 8: Estimated parameters and standard errors for ARIMA(2,0,1) model.

The expression of ARMA(2,1) for rough part:

Xt − µ = ϕ1(Xt−1 − µ) + ϕ2(Xt−2 − µ) + εt + θ1εt−1

Xt = ϕ0 + ϕ1 ·Xt−1 + ϕ2 ·Xt−2 + εt + θ1εt−1 ,where ϕ0 = µ(1− ϕ1 − ϕ2)

Xt = −0.0000187 + 1.1433 ·Xt−1 − 0.3303 ·Xt−2 − εt−1

4.2.3 Rough Part Forecasting

We use the year 1850 - 2015 Temperature Anomalies rough part to forecast our last 6 years’ Temperature Anomalies
rough part. First, we use the sarima.for function with AR(2) and MA(1) to forecast last year’s Temperature Anomalies.
Then, we plot the six forecasting values and the real values in one graph. By looking at the graph on the top, we can
see that the blue confidence band fully encompasses the fitted values, which means it is a good prediction. The blue
area means an approximate 95% prediction interval. The way to get the prediction interval is to use the predicted
values plus and minus the value of 1.95 multiplied by the standard errors for each predictor. The bottom left graph is
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just a zoomed-in graph of our top graph for the last six years. The last six years’ temperature anomalies values of the
rough part we predict by ARMA(2,1) are 0.067679785 0.008626265, -0.012512317, -0.017174109, -0.015521631, and
-0.012092486.

The bottom right graph is the forecasted and observed values of the rough from the last 6 years from 2016 to 2021. We
can see that the forecasted values go through the middle of the observed values. The three above graphs show that our
forecast of the rough part is a good fit.

4.3 Method II Results

The above two plots show our results from forecasting. The top center plot shows our forecasting for the rough and
trend. For the very last six years, there is a small horizontal blue line that predicts what the values from 2016 to 2021
are. Meanwhile, the actual observed values are not constant as the fitted line suggests.
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The bottom left plot zooms in on the last six years of the top center plot and looks at the fitted versus observed values.
We can see that the forecasted values are approximately horizontal and constant throughout time, which matches the
forecasted line in the bottom right graph.

Year mt Xt Yt = mt +Xt Observed

2016 0.9383427 0.067679785 1.0060224 1.255
2017 0.9537709 0.008626265 0.9623972 1.115
2018 0.9691991 -0.012512317 0.9566868 0.960
2019 0.9846274 -0.017174109 0.9674533 1.144
2020 1.0000556 -0.015521631 0.9845340 1.276
2021 1.0154839 -0.012092486 1.0033914 1.078

Table 9: Forecasted and Observed Temperature Anomalies (2016-2021)

The table above shows the values we got from the spline method. The mt row is our trend, the Xt row is our rough, the
Yt column is our predicted observations, and the Observed column is the true observed values.

5 Final Results

Year Method 1 Method 2 Observed

2016 1.0064209 1.0060224 1.255
2017 0.9612019 0.9623972 1.115
2018 0.9760345 0.9566868 0.960
2019 1.0384229 0.9674533 1.144
2020 1.0358330 0.9845340 1.276
2021 1.0274494 1.0033914 1.078

Table 10: Comparison of Forecasted Temperature Anomalies by Method 1 and Method 2 with Observed Values
(2016-2021)

These two methods look to have a similar result in the prediction, however, we prefer method 1 which is the blue trend.
We prefer this method because it is closer to the actual observed values overally. Looking at the blue trend, which is
method I, and the purple trend, which is method II, we see that the first two predicted years are the same, and after that,
the two method predictions diverge. Meanwhile, the table shows the values of each of the observed and fitted values for
the last six years. Therefore, the model we chose from method one is our final overall model, which is ARIMA(3,1,0).
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6 Conclusion and Discussion

Based on our findings, we found these both two methods did good predictions for the last 6 years, the two methods
predict very similar values for the years 2016 and 2017. However, overall we think that the ARIMA model gives better
predictions because it provides a closer prediction value to the real value of temperature anomalies. We applied two
methods, the first of which is ARIMA to forecast the observations of the last 6 years. The second is to forecast the last
6 years to add the Rough Part and Trend Part together. Through our graph to compare these two methods, we find the
two methods have similar results in the prediction. We think these two methods are good at predicting, but we prefer
method one which is the ARIMA(3,1,0) model to forecasting the Temperature Anomalies because it is closer to our
real data of the last 6 years from 2016 to 2021. Based on the visualization of Temperature Anomalies, we find there is
clearly an increasing trend which means that as the years go by, temperature becomes warmer and warmer. Thus, it is
important to forecast based on the potential consequences of a warmer climate. With this, we successfully answered
both of our research questions.

Another thing we want to discuss is that our method I and method II predictions are all underestimates compared with
the observed. Although the values are relatively close to the observed, both are still underestimating the last six values.
Perhaps it is because the previous values that the forecasting was based on did not indicate such a large increase in
temperature. We can see the steep increase from our observed value graphs, so even if the forecasted values predicted
an increase, it was just not high enough.
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