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ABSTRACT

Online fashion retail has revolutionized shopping but faces persistent sizing issues, driving return
rates above 25%, costing fashion retailers billions of dollar annually, and increasing textile waste
and carbon emissions. We present GarmentIQ, an end-to-end computer vision system combining gar-
ment classification, high-resolution segmentation, and landmark detection for precise, template-free
measurements across nine categories. An interactive web interface lets users define custom mea-
surement points and export structured JSON and PDF instructions. We used a 23,266-image dataset
from Nordstrom and Myntra, and our tiny ViT classifier achieves 95.76% accuracy, demonstrating
superior generalization after fine-tuning on Zara data. BiRefNet produces high-quality segmentation,
and HRNet-based landmark extraction attains high precision, with customized landmark derivation.
GarmentIQ’s modular, user-friendly design streamlines workflows, reduces returns, and promotes
sustainability, laying the groundwork for future automated fashion analysis.

Keywords Automated Garment Measurement - Fashion Computer Vision - Vision Transformer - Garment Keypoint
Detection - Image Segmentation for Fashion

1 Introduction

The fashion industry is undergoing a profound transformation, largely propelled by the surge in online retail. This
shift has introduced unparalleled convenience for consumers but has also amplified persistent challenges-most notably,
the issue of inaccurate garment sizing. High return rates in online apparel sales, frequently exceeding 25%, are
primarily driven by inconsistencies in sizing standards and the limitations of traditional, manual measurement methods
[Miell et al., [2018| Zbavitel, |2024]. Manual garment measurement is not only labor-intensive, averaging around five
minutes per item, but also susceptible to human error and inconsistency. These inefficiencies contribute to customer
dissatisfaction and significant financial losses for retailers, with UK retailers alone facing costs estimated at £60 billion
annually due to returns [Miell et al., 2018|]. Furthermore, sizing inaccuracies exacerbate sustainability concerns by
increasing carbon emissions and textile waste, thereby intensifying the environmental impact of the fashion sector
[Miell et al., [2018]].

Recent technological advancements are beginning to address these longstanding challenges. Digital garment measuring
technologies and Al-driven solutions now enable faster, more precise, and highly consistent measurements, significantly

* All authors contributed equally to this research.
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reducing both time and labor while improving fit accuracy [Kowaleczko et al., 2022, Paulauskaite-Taraseviciene et al.,
2022]. For example, wearable technologies and computer vision-based systems can capture detailed body or garment
measurements within minutes, streamlining processes such as custom tailoring and reducing the necessity for in-person
fittings [Zbavitel, 2024} |Chan et al., 2022].

Automated computer vision pipelines have demonstrated promising results in extracting garment measurements from
real-world images. These systems leverage advanced segmentation and landmark detection algorithms to improve
scalability and measurement precision [Zbavitel, 2024, |Paulauskaite-Taraseviciene et al.l 2022]. For instance, pipelines
employing models like U-Net for garment segmentation and Keypoint R-CNN for landmark detection have achieved
measurement errors as low as 0.75 - 1.27 cm across various garment types, highlighting their practical applicability and
accuracy [Paulauskaite-Taraseviciene et al.,[2022]]. Neural network-based error correction further enhances measurement
reliability, eliminating the need for rigid garment templates and accommodating a wider variety of apparel [Kowaleczko
et al.,[2022].

Despite these advancements, many current solutions remain constrained by their reliance on fixed templates or garment-
specific models, limiting their flexibility and scalability in handling the diversity of real-world apparel [Kowaleczko
et al., [2022, [Paulauskaite-Taraseviciene et al., [2022].

In response to these multifaceted challenges, we introduce GarmentIQ - a comprehensive, automated system designed
to revolutionize garment measurement in modern fashion retail. As shown in Figure[T] GarmentIQ integrates state-
of-the-art computer vision techniques, including garment classification, high-resolution segmentation, and landmark
detection, to enable precise measurement across a broad spectrum of garment categories. The system’s robust data
pipeline incorporates large-scale image scraping and model fine-tuning, supporting nine distinct garment types.
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Figure 1: An overview of the GarmentIQ pipeline

A key innovation of GarmentIQ is its flexible measurement instruction generation interface. This interactive, web-based
tool allows users to define custom measurement points and dimensions, generating standardized outputs in both JSON
and PDF formats for consistent downstream integration. Unlike prior approaches that depend on fixed templates or
manual calibration, GarmentIQ’s framework is adaptable to the variability of real-world garment images and diverse
user requirements, ensuring both versatility and accuracy. This modular design philosophy aligns with recent academic
recommendations advocating for adaptable frameworks in smart garment systems, which have demonstrated benefits in
lowering technical barriers and enhancing creativity in design and production [Miell et al., 2018].
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By combining advanced deep learning models with a user-centric, modular framework, GarmentIQ represents a
significant leap forward in automated garment measurement. Experimental results validate the system’s high accuracy
in garment classification and keypoint localization, underscoring its robustness and practical utility. In addressing the
pressing needs of today’s fashion industry - improving fit, reducing returns, and promoting sustainability - GarmentIQ
not only offers immediate operational benefits but also lays the groundwork for future innovations in flexible, production-
ready fashion technology.

2 Related Work

Traditional machine learning approaches to garment classification, such as those based on handcrafted features and
shallow classifiers, have achieved moderate performance. For instance, the combination of Histogram of Oriented
Gradients (HOG) with a Support Vector Machine (SVM) achieved an accuracy of 86.53% on the Fashion-MNIST
benchmark [K V and K| 2019]] and up to 91.32% on pure clothing images [Xu et al.l 2022], highlighting the limitations
of these methods when faced with more complex or occluded scenarios. The advent of deep learning ushered in a
new era of classification performance. Researchers have also explored optimizing Convolutional Neural Networks
(CNNs) for fashion data classification, achieving a 92.68% test accuracy [Saranya and Geetha, [2022[]. Moreover,
early convolutional networks like AlexNet, when combined with extreme learning machines (ELM), reached 93.14%
accuracy on the ACWS dataset, demonstrating the value of transfer learning and hybrid classifiers [Zhou et al., 2022].

Parallel to classification, semantic segmentation of clothing items has matured from simple threshold-based or edge-
based methods to deep encoder-decoder architectures. U2Net, trained on the iMaterialist Fashion 2019 dataset, segments
garments into multiple parts (upper body, lower body, full body) in complex scenes [Guo et al.| 2019]. Advanced
ResNet50-based models like FashionSegNet [Xiang et al.,[2023]] have achieved high-precision masks, addressing the
variability and boundary complexity inherent in clothing images [He et al.| 2015]]. Extended U-Net architectures,
enriched with auxiliary branches for bounding box and multi-label classification, have demonstrated IoU improvements
from 73.38% to 87.37% by injecting category information, illustrating the value of multi-task learning in segmentation
[Vozarikova et al., [2021]]. Feature Fusion Networks (FFNet) that merge multi-stage encoder—decoder features further
enhance boundary recovery and semantic consistency in parsing tasks [Li et al.|[2025].

Keypoint-based landmark detection has been pioneered by the DeepFashion benchmark and its follow-up efforts. The
ECCYV 2016 “Fashion Landmark Detection in the Wild” introduced a cascade of CNNs to predict eight functional
garment landmarks (e.g., neckline corners, hems), building the first large-scale dataset of 120K images and establishing
baseline accuracies for landmark localization [Liu et al.| 2016]]. DeepFashion2 expands upon this work by providing
dense landmarks (averaging 23 per category), per-pixel masks, and a comprehensive end-to-end Match R-CNN baseline,
enabling robust landmark and pose estimation even under heavy occlusion and diverse viewpoints [|Ge et al.,2019].

While many existing methods excel in one of these tasks - classification, segmentation, or landmark detection - few
offer a unified, flexible framework capable of seamlessly integrating all three. Our GarmentIQ system not only achieves
a competitive classification accuracy, which we will talk about in later sections, but also provides high-resolution
segmentation and precise keypoint localization within a modular, user-driven interface. This positions GarmentIQ to
surpass previous research by offering a holistic solution that emphasizes adaptability to varied garment types, efficient
downstream integration, and extensibility for future innovations in automated garment measurement.

3 Methodology

In this section, we detail the methods used to develop GarmentIQ. For clarity, the methodology is divided into four
main components: measurement instruction generation, classification, segmentation, and landmark extraction.

3.1 Measurement Instruction Generation

Measurement Instruction Generation is a preparatory step used before any measurements are taken. Once a designer
finalizes a garment design, they can use our web interface to generate a complete set of measurement instructions in
both JSON (for technical pipelines) and PDF (for human review). This workflow empowers non-technical users to
produce precise, machine-readable instructions for downstream automated measurement.

3.1.1 Mechanism

To allow flexible, user-defined measurements on any of our nine garment types, we built a lightweight web interface
(HTML / CSS / JavaScript) that guides the user through three simple steps:
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1. Garment Selection. The user picks one of the nine garments (e.g. “short sleeve dress”) from a drop-
down.

2. Point Definition. The user clicks on the predefined landmarks on the garment, or choose their own coordinates
in the interface.

3. Dimension Specification. Our script automatically enumerates all unordered pairs of the selected points as
candidate “dimensions.” The user then picks the pairs they care about (e.g. point 3 to point 7), assigns each a
human-readable name and a description.

All interactions execute entirely client-side: JavaScript event listeners capture click locations, CSS renders draggable
landmark markers, and the current points-and-dimensions state is maintained in a JSON object. Upon submission, the
interface exports this instruction set as a downloadable JSON file and simultaneously generates a PDF in which each
measurement line is overlaid on the garment image for easy visual verification.

3.1.2 Output Schema

The measurement interface produces a JSON file conforming to a Draft-7 schema (see Appendix [A]for the full listing).
At a high level, the schema enforces:

» Top-level objects: Each key is a garment type mapping to a garment record.
* Garment record: Contains exactly two required fields:

landmarks A map from numeric IDs to landmark objects. Each landmark must specify:
predefined (boolean): true if predefined in the GarmentIQ system, false if user-defined.
— description (string): Semantic label for the point.
— x, y (number): Pixel coordinates in image space.
— neighbors (object): Exactly two nearby landmarks keyed by their IDs, providing contextual connec-
tivity for customized landmarks.
— derivation (object): Specifies how a custom landmark was computed. Includes:
* function (string): The name of the derivation function used during landmark extraction.
* One or more additional named parameters representing arguments passed into the function, such as
landmark IDs or geometric constraints (e.g., p1_id, direction).
measurements A map from measurement names to measurement definitions. Each definition must include:
— landmarks.start and landmarks.end: The IDs of the two landmarks between which the mea-
surement is taken.
— description: A human-readable note explaining the measurement.

* No additional properties are allowed at any level, ensuring strict conformance.

This schema guarantees that downstream modules receive a consistent, self-documenting instruction set, supporting
both predefined and dynamically derived custom landmarks. The complete Draft-7 JSON Schema is provided in

Appendix [A]
3.2 Classification

Classification serves as the first and arguably most critical step in the entire pipeline, acting as a bottleneck for
subsequent processes [Petersen et al.| [2014]]. If a garment is misclassified at this stage, the downstream tasks will
inevitably fail. To ensure high reliability, we trained three different models and compared their performances to select
the best one.

Given that our target includes nine garment categories (long sleeve dress, long sleeve top, short sleeve dress, short
sleeve top, shorts, skirt, trousers, vest, and vest dress) existing public datasets were insufficient to cover all types.
Therefore, we scraped a substantial number of images from Nordstrom, a leading American fashion retailer, to build a
more comprehensive dataset.

3.2.1 Image Scraping

To supplement existing fashion datasets with all nine target garment categories, a semi-automated scraping pipeline was
developed for Nordstrom’s website. First, we manually collect raw network logs in our browser’s Developer Tools by
filtering image requests and saving the results as a JSON metadata file. We then run a PowerShell script that:
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1. Parses the raw JSON to extract and index each image URL.

2. Creates a local "images" directory (if absent).

3. Downloads every image.

4. Generates a cleaned metadata file and removes the raw log only if all downloads succeed.

This workflow ensures robust handling of Nordstrom’s access restrictions (via custom headers and pacing), produces
well-organized image and metadata sets.

3.2.2 Model Structure

To achieve robust garment classification performance, we experimented with three different model architectures: two
custom convolutional neural networks (CNN-3 and CNN-4) and one transformer-based model (tiny ViT).

Both CNN-3 and CNN-4 are manually designed convolutional neural networks featuring modular structures inspired by
VGG-like architectures [[Simonyan and Zisserman, |2015]]. Each model consists of multiple convolutional blocks, each
comprising two convolutional layers followed by batch normalization, ReLU activation, max pooling, and dropout for
regularization.

CNN-3 Conv Block 1 Conv Block 2 Classifier

2x Convzd (64 fters) 2 x Convad (128 fiters) 2 o (e there) Linear(6144 — 512)
Input N BatchNorm + ReLU BatchNorm + ReLU BatchNorm + ReLU BatchNorm + ReLU + Dropout(p = 0.5)
3x120 %184 MaxPooi2d (2x2)  [7|  MaxPool2d(2x2)  [7| puteeiemeRe Linear(512 - 256)

Dropout (p = 0.25) Dropout (p = 0.25) 256 x 4% 6 BatchNorm + ReLU + Dropout(p = 0.3)
64 x 60 x 92 128 x 30 x 46 Linear(512 - 9)

CNN-4 Conv Block 1 Conv Block 2 Conv Block 3 Conv Block 4 Classifier
2 x Conv2d (64 filters) 2 x Convad (128 filters) 2 x Conv2d (256 filters) 2 x Convad (512 filters) Linear(12288 — 1024)
Input N BatchNorm + ReLU BatchNorm + ReLU BatchNorm + ReLU BatehNorm + ReLU BatchNorm + ReLU + Dropout(p = 0.5) Output
3x120 x 184 MaxPool2d (2 x 2) ™ MaxPool2d (2 x 2) i MaxPool2d (2 x 2) 1 ad alc A"’"‘p |22 6 Linear(1024 — 512) 9
Dropout (p = 0.25) Dropout (p = 0.25) Dropout (p = 0.25) apt\\gelzvg 40:6 (4x6) BatchNorm + ReLU + Dropout(p = 0.3)

64 x 60 x 92 128 x 30 x 46 256 x 15 x 23 Linear(512 - 9)

Figure 2: An overview of CNN-3 and CNN-4 model structures

As shown in Figure@ CNN-3 consists of three such blocks, while CNN-4 introduces an additional fourth block with
deeper feature extraction capabilities. To address overfitting, both models employ dropout layers at different stages.
Before classification, the feature maps are adaptively average-pooled to a fixed spatial size and then flattened. The
resulting features pass through two fully connected layers with batch normalization and dropout, before the final
classification output.

The third model we evaluated is based on the Data-efficient Image Transformer (DeiT) architecture, specifically the
tiny-sized version (deit_tiny_patch16_224), developed by Meta Al. Unlike CNN-based models, tiny ViT treats the
input image as a sequence of patches and processes them through a Transformer encoder, similar to models used in
natural language processing. Each patch embedding is combined with positional encodings, and the token output is used
for image classification. We initialized tiny ViT with pretrained weights on ImageNet-1k to leverage transfer learning
and fine-tuned it for our garment classification task. The final classification head was replaced with a new linear layer
corresponding to the number of garment classes [[Touvron et al., 2021} |Wu et al.} 2020, Deng et al.,|2009].

3.2.3 Model Fine-tuning

To adapt all three trained base classifiers - CNN-3, CNN-4, and tinyViT - to the domain-specific Zara dataset, we
fine-tuned each model using a lightweight and consistent protocol tailored for small datasets. Fine-tuning was conducted
using stratified 5-fold cross-validation to ensure class balance and robust model selection. For each model, training
was initialized from previously trained weights, with optional freezing of earlier layers to retain generalizable features.
Early stopping based on validation loss was employed to avoid overfitting, and the best-performing model across all
folds was selected according to the lowest cross-entropy loss. The selected model was then re-evaluated on the full Zara
dataset to assess domain alignment. This approach ensured each classifier could be effectively adapted to the specific
visual characteristics of Zara images, which was particularly important for supporting downstream landmark detection.

Given the limited size of the Zara dataset - where reserving a separate test split would have unduly reduced the already
scarce training examples - using cross-validation for model selection allowed us to maximize data utilization without
compromising methodological rigor. Moreover, because the classifier serves solely as a feature extractor for a landmark
detection pipeline that is evaluated independently, this evaluation strategy strikes an appropriate balance between
domain adaptation and robust performance estimation.
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3.3 Segmentation

For the segmentation task, we employed the BiRefNet (Bilateral Reference Network) model [Zheng et al., [2024],
a state-of-the-art method for high-resolution binary segmentation. We used the publicly available pretrained model
without additional fine-tuning for efficient and high-quality segmentation.

3.4 Landmark Extraction

AT

Long sleeve dress Long sleeve top Short sleeve dress Short sleeve top
Shorts Skirt Trousers Vest Vest dress

Figure 3: DeepFashion2 predefined landmarks

Accurate landmark localization is critical for downstream measurement tasks. We employ a high-resolution network
(HRNet) pretrained on the DeepFashion2 dataset to extract a fixed set of semantic keypoints for each garment as shown
in Figure 3] By maintaining high-resolution feature maps throughout the network, HRNet produces spatially precise
heatmaps that correspond to the predefined fashion landmarks in DeepFashion2 [Ge et al., 2019].

3.4.1 Extraction on Predefined Landmarks

Each input image is first cropped to isolate a single garment, using either the ground-truth bounding box or the output
of a clothing detector. The resulting crop is processed by the pretrained HRNet-for-Fashion-Landmark-Estimation
model, which is trained on the DeepFashion2 dataset. This model produces a heatmap for each of the predefined
DeepFashion2 landmarks. The pixel with the highest activation in each heatmap is selected as the (z, y) coordinate of
the corresponding keypoint. These extracted landmarks are then retained for use in the measurement workflow [Sun
et al.| 2019| Xiao et al.||2018],[Wang et al.,[2019].

3.4.2 Extraction on Customized Landmarks

While the predefined landmarks provided by the DeepFashion2 dataset are suitable for many tasks, they do not cover all
keypoints required for precise garment measurements. To address this limitation, we introduce a method for deriving
customized landmarks based on the available detected points and fine-grained segmentation masks derived from the
BiRefNet model.
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Take the top as an example shown in Appendix [C] to measure the front length of a top, one must determine the vertical
distance from the shoulder seam to the lowest point of the garment’s front hem. While the pretrained model can
detect the shoulder landmark, it does not provide a corresponding hem point. To resolve such problem, we design a
general-purpose function that derives such customized landmarks by intersecting directional rays with the garment
boundary.

The process operates as follows: Given a known keypoint (e.g., the shoulder), we define a direction vector (e.g.,
vertically downward). A ray is cast from the keypoint in the specified direction until it intersects with the boundary of
the garment, which is extracted from the segmentation mask. The intersection point is then recorded as the customized
landmark. This approach can be applied flexibly to estimate various garment-specific landmarks not directly detected
by the pretrained model, enabling more comprehensive and accurate measurements.

This derivation strategy bridges the gap between keypoint detection and fine-grained garment analysis, leveraging both
the spatial information from predicted landmarks and the structural cues embedded in the segmentation masks.

4 Experimental Setup

This section details the implementation and configuration of each component in our system pipeline, from user-
facing tools to backend processing modules. We first describe the interactive interface used to generate measurement
instructions, followed by the classification, segmentation, and landmark extraction modules. Finally, we outline how all
components are integrated into a unified pipeline, enabling automated garment analysis from raw images to structured
measurement data.

4.1 Measurement Instruction Generation

The measurement-instruction tool is a purely client-side application implemented in vanilla JavaScript, HTMLS5, and
CSS3. Internally, it maintains two in-memory data structures: one tracks the set of selected landmarks for each garment,
and the other holds the final instruction payload. Navigation through the three stages-garment selection, landmark
picking, and measurement definition-is handled by showing or hiding the corresponding containers.

When a garment is chosen, its SVG thumbnail is loaded dynamically into the page. During landmark selection, click
events on the SVG markers toggle their visual state and update the in-memory selection set. In a special “custom mode,”
clicks on empty areas of the SVG insert new landmark markers with user-editable labels. Once landmarks are finalized,
the application enumerates every pair of selected points and populates a table of candidate measurements, each with
inputs for a user-defined name and description. Selecting a measurement draws a dashed line between the two points on
the SVG; deselecting removes it.

For export, the tool serializes the landmark and measurement data into a JSON file for download. To generate a PDF, it
renders the annotated SVG into an HTML canvas (with an SVG-to-canvas fallback) and then embeds the resulting raster
image and a formatted measurement table into a letter-size PDF document. This event-driven, DOM-manipulation
approach requires no backend and ensures a smooth, interactive workflow from user input to final instruction files.

4.2 Classification

4.2.1 Base Training Dataset

The garment classification models are trained on the “Nordstrom & Myntra Clothes Image Data - GarmentIQ” dataset
[Yuan| 2025a], which combines high-quality fashion photographs from two e-commerce platforms. Specifically, Myntra
clothes images are randomly chosen from the "Fashion Products Image Dataset [Aggarwall 2019]." Figure ] shows
some sample images from the dataset.

In total, the dataset contains 23,266 images across nine garment categories, Table [T] shows the garment category
breakdown from those two platforms.

The dataset is accompanied by a metadata. csv file that serves as a mapping directory. Each row in this CSV contains
the image filename or ID, its full URL, the assigned garment category, and the source platform (Myntra or Nordstrom).
By querying the CSV, downstream code can efficiently filter, download, and organize images for training, validation,
and testing without hard-coding paths or URLSs.
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Figure 4: Sample images from each of the nine garment categories in the base training dataset

Table 1: Image counts per garment category from Myntra and Nordstrom

Category Myntra Nordstrom Total
long sleeve dress 0 2,334 2,334
long sleeve top 3,215 0 3215
short sleeve dress 0 2,586 2,586
short sleeve top 3,500 0 3,500
shorts 545 2,566 3,111
skirt 128 1,558 1,686
trousers 1,653 617 2,270
vest 15 1,511 1,526
vest dress 0 3,038 3,038
Total 9,056 14,210 23,266

4.2.2 Fine-tuning Dataset

To specialize the garment classifiers for downstream landmark detection on Zara clothing images [2025b]), we
curated a small domain-specific dataset sourced exclusively from Zara’s product imagery. Unlike the more diverse and
mixed-platform base training data, this dataset focuses solely on Zara garments to better capture their consistent visual
style, photographic angles, and fabric textures. As shown in Table[2] the Zara dataset includes 834 images across the
same nine garment categories used in the base dataset. Due to the relatively small size of this collection, it was used
entirely for training and validation via 5-fold cross-validation during fine-tuning.

This focused dataset enables the models to better generalize to the stylistic characteristics of Zara garments, which is
critical for reliable downstream tasks such as keypoint and landmark detection.

4.2.3 Training, Testing, and Fine-tuning Framework

The garment classification pipeline is implemented as a self-contained Python module that abstracts all routine tasks
into four core operations, streamlining experimentation and deployment:

First, the data split utility ingests one or two ZIP archives containing images and their accompanying metadata CSV. It
verifies directory structure, checks filenames against metadata for consistency, and either performs a stratified random
split or accepts separate train/test archives, producing clean train/ and test/ folders ready for model consumption.

Second, the training function wraps model instantiation, optimizer setup, and the training loop within a stratified k-fold
cross-validation framework. Early stopping and automatic checkpointing of the best validation model are built-in, so
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Table 2: Image counts per garment category in the Zara fine-tuning dataset

Category Count
long sleeve dress 80
long sleeve top 352
short sleeve dress 14
short sleeve top 84
shorts 56
skirt 62
trousers 80
vest 94
vest dress 12
Total 834

invoking training requires only the model class (e.g. CNN3, CNN4, or tinyViT), its constructor arguments, and a small
hyperparameter dictionary.

Third, the testing routine loads a saved checkpoint, runs inference over the held-out set, and computes standard metrics,
cross-entropy loss, overall accuracy, weighted F1 score, and prints a detailed per-class classification report. This
function can be pointed at any checkpoint file without further configuration.

Finally, the prediction helper supports single-image inference: it loads a pretrained model, applies the same preprocess-
ing pipeline (resize, normalize), and returns the top predicted label along with the full probability vector, which could
make a smooth transition to the next task.

By accepting any torch.nn.Module subclass, this framework allows users to plug in custom architectures as easily as
the provided out-of-the-box models, enabling an effortless, end-to-end workflow for training, evaluating, and deploying
garment classifiers.

In addition to training from scratch, the framework supports fine-tuning of pretrained models via the
fine_tune_pytorch_nn function. This utility enables transfer learning by loading existing weights, optionally
freezing specified base layers, and retraining the model on a new dataset using stratified k-fold cross-validation. It
retains all the benefits of the training workflow-early stopping, checkpointing, and consistent metric tracking-while
accelerating convergence and improving generalization on limited data. The fine-tuning process is fully configurable,
accepting user-defined models, datasets, and optimizer parameters, thus making it easy to adapt pretrained models to
new classification tasks.

4.3 Segmentation

For image segmentation, we utilize BiRefNet model [Zheng et al.,|2024]], enabling us to achieve high-quality mask
extraction without training a model from scratch. While the core segmentation model itself is externally sourced, we
designed a flexible and extensible framework around it to streamline inference and facilitate downstream use cases such
as background editing and batch processing.

The segmentation pipeline is modular and designed for ease of use and extensibility. Upon loading, the model is
configured for either full or half precision, automatically selecting the appropriate hardware accelerator.

Given an input image, the pipeline resizes and normalizes it before passing it to the model for inference. The resulting
segmentation mask is returned at the original resolution, enabling precise foreground extraction. A built-in utility allows
for visual inspection of both the raw image and mask.

To support upcoming tasks and downstream applications, we provide functionality to replace the background with a
specified color using the generated mask. Furthermore, a batch processing module enables efficient segmentation and
optional background replacement for entire directories of images, automatically saving results in a structured format for
further use or evaluation.

4.4 Landmark Extraction

To evaluate the accuracy of our landmark extraction method, we manually annotated all the keypoints required for
garment measurement on 10 images per garment type using a self-built web interface. This interface facilitated efficient
collection of ground-truth coordinates and allowed for streamlined comparison with automatically extracted keypoints.
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Once annotated, the images are first passed through a classification module that predicts the garment type. The predicted
class label is then used to guide the subsequent landmark extraction and derivation process. Specifically, our landmark
detection model is based on HRNet trained on the DeepFashion2 dataset, which outputs predictions for up to 294
predefined keypoints across all garment types [Sun et al.l 2019} Xiao et al.,[2018| |Wang et al.,[2019]]. However, not all
landmarks are relevant for every garment. Therefore, we implement a filtering step where only the subset of landmarks
corresponding to the predicted garment class is retained for further processing.

To handle additional measurement-specific keypoints that are not included in the predefined set, we developed a python
module of landmark derivation. Internally, the module is organized into several functional layers which includes
managing segmentation masks, geometric operations such as directional ray generation, boundary intersection via
Shapely and OpenCV.

The detection and derivation modules are functionally decoupled but tightly integrated in the pipeline. After landmark
detection and class-based filtering, relevant landmarks are passed to the derivation module when additional measurement-
specific points are required. All outputs-predicted landmarks, derived landmarks, and segmentation masks-are stored in
a unified data structure, enabling seamless comparison with manual annotations.

Once all relevant landmarks-both detected and derived-are obtained, we use them to compute garment measurements by
calculating the pixel distance between specific landmark pairs. These measurement rules are defined in a structured
JSON configuration file, which specifies which landmarks correspond to each measurement (e.g., chest width, front
length, hip width). For each image, we compute the measurement ratios (e.g., chest/front length) based on the extracted
keypoints and compare them to the ratios obtained from the manually annotated ground truth. This ratio-based evaluation
allows us to assess the accuracy of the pipeline in a scale-invariant way and provides insight into how well the system
replicates real-world garment measurements across different garment categories.

5 Results

In this section, we present the results of our system components. Since the segmentation module is based on a
well-pretrained model, we did not conduct further evaluation for it. Instead, we focus on the classification component,
which was trained and tested using our curated dataset. In addition, we put a lot effort on landmark extraction evaluation,
especially for customized landmarks.

5.1 Measurement Instruction Generation

As previously mentioned, the measurement instruction interface produces two complementary outputs: a structured
JSON file for machine processing and a PDF visualization for human verification. Taking the short sleeve top category
as an example, both outputs represent the same set of garment-specific measurement logic, typically including waist,
full length, and hips, defined by annotated landmarks.

The JSON output (Appendix [B)) encodes the defined landmarks and measurements in a machine-readable format,
associating each point with coordinates and descriptive labels. It’s important to note that these coordinates correspond
to positions on the example garment image used during the landmark selection process-they do not reflect the actual
physical dimensions of a garment. Instead, the coordinates serve primarily for calibration and traceability. Additionally,
they act as placeholders: when landmark positions are extracted from real garment images, these coordinates can be
updated while preserving the same output structure, ensuring consistency and interoperability across different system
components. In cases where landmarks are not predefined, the JSON also includes a derivation block specifying how a
custom landmark should be generated. This block contains a function name (e.g., derive_keypoint_coord) along
with its associated arguments, such as reference point IDs and geometric parameters (e.g., direction), which together
define the logic used to compute the position of the custom landmark during landmark extraction. The PDF counterpart
(Appendix [C) provides a visual summary, displaying landmarks and measurement lines directly on the garment image,
which allows for intuitive human verification and interpretation.

This dual-format output is essential for downstream tasks, while the JSON enables automated measurement extraction,
the PDF ensures that human reviewers can validate and refine the instructions, ensuring accuracy and reliability in later
stages such as dataset generation or model training.
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5.2 Classification

5.2.1 Base Model Performance

We evaluated three models - CNN-3, CNN-4, and tinyViT - on an 85/15 stratified split of the dataset. This yielded
19,777 training images and 3,489 test images, with the class distributions as TableE]below.

Table 3: Number of images per garment category in the train and test sets

Category Train  Test
short sleeve top 2,977 523
long sleeve top 2,773 442
shorts 2,626 485
vest dress 2,596 442

short sleeve dress 2,204 382
long sleeve dress 1,950 384

trousers 1,950 320
skirt 1,405 281
vest 1,296 230
Total 19,777 3,489

All images were resized to 120 x 184 and normalized with mean [0.8047,0.7808,0.7769], standard deviation
[0.2957,0.3077,0.3081] on the RGB channels. Training used AdamW optimizer [Loshchilov and Hutter, 2019],
with learning rate 2.25 x 10~%, weight decay 10~#, 15-fold cross-validation, up to 120 epochs with patience 10, and
batch size 256. tiny ViT additionally employed a patch size of 6.

Table 4: Summary of precision (P), recall (R), and F1-score on the test set for each base model

CNN-3 CNN-4 tinyViT

Category P R F1 P R F1 P R F1
long sleeve dress 093 0.89 091|094 0.88 091|094 092 0.93
long sleeve top 099 097 098 | 099 098 0.99 | 098 1.00 0.99
short sleeve dress 0.85 093 089|087 095 091|089 091 0.90
short sleeve top 097 098 098 | 098 099 0.99 | 099 099 0.99
shorts 097 098 098 | 098 099 098 | 099 099 0.99
skirt 092 091 092|093 091 092|095 093 0.94
trousers 098 098 098 | 097 099 098|099 098 0.99
vest 094 093 093|097 094 096 | 092 095 0.94
vest dress 094 090 092|094 092 093|094 092 0.93
Overall

Precision 0.9458 0.9533 0.9576

F1 (weighted) 0.9459 0.9533 0.9576

Trainable Params 4.43M 17.81M 5.48M

Classification results on the test set are summarized in Table All three models, CNN-3, CNN-4, and tiny ViT, achieved
strong performance, with overall accuracies exceeding 94%. tinyViT achieved the best results, reaching 95.76%
accuracy and the highest macro F1 score. While all models performed well on garments like short sleeve tops, shorts,
and trousers, they consistently struggled more with long sleeve dresses and vest dresses. Specifically, long sleeve dress
had the lowest recall for CNN-3 (0.89) and CNN-4 (0.88), and vest dress showed slightly lower F1 scores across all
models compared to other categories. These two garment types appear to be the most challenging to classify, likely due
to visual similarity with other categories and high intra-class variability.

5.2.2 Fine-tuned Model Performance

Similar to the base model training, we resized, standardized the images and used AdamW optimizer [Loshchilov and
Hutter, 2019], with learning rate 1072, weight decay 10~4, 5-fold cross-validation, up to 50 epochs with patience 5,
and batch size 128. tinyViT additionally employed a patch size of 6.
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Table 5: Model performance after fine-tuning on Zara data and evaluated on both Zara (training set) and Nordstrom &
Myntra (N&M) test set. Precision / F1 change is relative to baseline performance in TableE}

Metric \ CNN-3 CNN-4 tinyViT
Zara Train Precision 09197 0.9592 0.9916
Zara Train F1 0.9216  0.9585 0.9917
Test Precision (N&M) | 0.9074 09132  0.9484
Test F1 (N&M) 0.9068 09137  0.9483
Test Change (N&M)

Precision -0.0384 -0.0401 -0.0092

F1 (weighted) -0.0391 -0.0396 -0.0093

After fine-tuning on the Zara dataset, the performance of all models was re-evaluated on both the fine-tuning (Zara) set
and the original test set from Nordstrom and Myntra. As shown in Table[5] all models achieved good accuracy and F1
scores on the Zara data, confirming successful adaptation to the target distribution. Notably, the tinyViT model attained
a near-perfect performance on Zara with 99.16% accuracy and an F1 score of 0.9917.

Howeyver, performance on the Nordstrom and Myntra test set diverged depending on the model architecture. All models
experienced a drop in performance on the Nordstrom and Myntra test set after fine-tuning. CNN-3 and CNN-4 both saw
decreases in precision (3.84% and 4.01%, respectively) and F1 score (0.0391 and 0.0396), suggesting some degree of
overfitting to the Zara distribution.

Meanwhile, tiny ViT demonstrated the smallest drop, with a minor decrease of only 0.92% in precision and 0.0093 in
F1 score. This indicates that the transformer-based tiny ViT model generalizes better to new, out-of-distribution data
compared to the CNN-based models. The relatively smaller drop in performance for tiny ViT suggests that, even after
fine-tuning, it retains stronger generalization capabilities across domains.

5.3 Landmark Extraction

For each garment, we computed the relative error of key measurements by comparing the ratio of dimensions derived
from predicted landmarks to those obtained from manual annotations. The table below reports the average absolute
difference in these ratios for each measurement and garment type:

5.3.1 Without Refinement

The results in Table[6]show that for most measurements - particularly those involving the chest and front length - the
method achieves low average ratio errors (below 6%), indicating strong alignment between predicted and manually
annotated landmarks. In these cases, the combination of the primary landmark detection model and our customized
landmark derivation strategy proves highly effective.

Table 6: Average absolute ratio error across garment types (Original)

Measurement Short sleeve Long sleeve Vest Shorts Trousers Skirt Short sleeve Long sleeve Vest
top top dress dress  dress
Back width / Arm width 0.056 0.107 - - - - - - -
Chest / Front length 0.031 0.034 0.047 - - - 0.032 0.059 0.019
Front length / Chest 0.031 0.033 0.056 - - - 0.031 0.055 0.019
Hip / Waist - - - 0242 0.029 0.821 0.258 0.236  0.096
Sleeve length / Front length ~ 0.037 0.015 - - - - 0.054 0.038 -

However, larger errors appear in certain measurements, such as the Hip/Waist ratio for shorts (0.242), skirts (0.821) and
dresses (ranging from 0.096 to 0.258). These discrepancies can be attributed to two main factors: (1) the landmark
detection model struggles to generalize well to garments such as skirts and (2) it is inherently difficult to define a
consistent hip position on such garments, which introduces ambiguity even in manual annotations.

To address the above mentioned relatively large errors, we introduced two additional strategies into the pipeline aimed
at improving robustness and precision.
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5.3.2 Background Replacement with Green Screen

Inspired by practices in the apparel and film industries, we replaced the original background of each image with a
uniform green color, RGB (102, 255, 102). The background modification process is shown in Figure[5] where we first
segment the trousers image to generate a mask, then use the mask to modify the background of the original image.

(a) Original trousers (b) Segmentation (c) Background re-
image mask placed

Figure 5: Illustration of the background replacement process using green screen technique

This helps reduce noise by providing strong contrast between the garment and the background. The results are shown
below in Table[7l

Table 7: Average absolute ratio error across garment types (Background Replacement)

Measurement Short sleeve Long sleeve Vest Shorts Trousers Skirt Short sleeve Long sleeve Vest
top top dress dress  dress
Back width / Arm width 0.078 0.134 - - - - - - -
Chest / Front length 0.025 0.041 0.108 - - - 0.031 0.064 0.017
Front length / Chest 0.025 0.039 0.019 - - - 0.031 0.060 0.017
Hip / Waist - - - 0.025 0.018 0.218 0.240 0211 0.097
Sleeve length / Front length ~ 0.055 0.017 - - - - 0.058 0.061 -

We can observe that for garments such as tops and dresses-where the original measurement errors (excluding Hip/Waist)
were already relatively low (ranging from 0.015 to 0.107)-this method did not lead to consistent improvements. In
some cases, it even introduced slight performance degradation, likely due to over-simplification of background cues
that were not interfering in the first place. Similarly, for the Hip/Waist measurement in dresses, where the initial errors
were already relatively high, background replacement had minimal impact. This suggests that the landmark detection
model performs consistently before and after background modification, and that the persistent error may stem from the
inherent ambiguity in defining the hip position, even in manual annotations.

However, the method proved effective for specific garment types with challenging visual conditions. In vests, for
example, the error in the Front length/Chest ratio decreased significantly from 0.56 to 0.19. This improvement can
be attributed to the presence of strong shadows near the hem in the original images, which the green background
successfully masked, leading to clearer garment boundaries. For shorts and skirts where the original model struggled with
accurate landmark detection, the background replacement also led to improved measurement accuracy, demonstrating
the method’s potential in scenarios with complex or noisy image regions.

5.3.3 Gaussian Blur-Based Landmark Refinement

We also implemented a refinement step for the detected keypoints using a Gaussian blur smoothing method (window
size = 5). This method operates on the predicted heatmaps to reduce spurious peaks and smooth the spatial distribu-
tion, enabling more stable and consistent landmark localization-particularly useful in regions where multiple nearby
activations could lead to misidentification. The results are shown in Table [§]

After adding the refinement step on top of the original landmark detection module, we observed only minimal
improvements. In most cases, the change in average absolute ratio error ranged from —0.01 to 0.031, indicating that the
refinement had limited impact on overall measurement accuracy.
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Table 8: Average absolute ratio error across garment types (Blurring refinement)

Measurement Short sleeve Long sleeve Vest Shorts Trousers Skirt Short sleeve Long sleeve Vest
top top dress dress  dress
Back width / Arm width 0.070 0.140 - - - - - - -
Chest / Front length 0.032 0.033 0.049 - - - 0.034 0.059  0.023
Front length / Chest 0.032 0.032  0.059 - - - 0.033 0.055 0.024
Hip / Waist - - - 0245 0.027 0.827 0.261 0.242  0.096
Sleeve length / Front length ~ 0.038 0.018 - - - - 0.059 0.043 -

6 Discussion

Our classification experiments demonstrate that all three models, CNN-3, CNN-4, and tiny ViT, achieve excellent
performance on the held-out test set, with overall accuracies of 94.58%, 95.33%, and 95.76%, respectively, and weighted
F1 scores above 0.94. tiny ViT delivers the best accuracy and F1, particularly on challenging categories such as short
sleeve tops and skirts. However, this improvement comes at a substantial computational cost: on our hardware (two
Nvidia T4 GPUs, each has 16GB memory; CPU memory is 32GB) CNN-3 completes training in about 4 hours, whereas
CNN-4 and tiny ViT require approximately 8 hours and 9 hours, respectively. Moreover, all models continue to struggle
with visually similar or highly variable classes - most notably long sleeve dresses and vest dresses - indicating that
further gains may depend on more advanced architectures or enhanced dataset quality (e.g. balancing, augmentation, or
higher-resolution images).

Fine-tuning on Zara data further refined the model performance, with tinyViT demonstrating the best generalization
ability across domains, exhibiting minimal performance drop on the Nordstrom & Myntra test sets compared to CNN-3
and CNN-4, which experienced a more significant decline. This suggests that transformer-based models like tinyViT
are more robust to domain shifts after fine-tuning.

The pretrained HRNet-based landmark estimator achieves strong results on the DeepFashion2 benchmark [Sun et al.,
2019, Xiao et al.l 2018| Wang et al.l 2019]]. This confirms its high spatial precision for predefined landmarks. Our
framework’s support for user-defined landmarks adds flexibility, but can fail in edge cases - such as extreme occlusions
or unconventional garment shapes - where simple distance-based rules break down. Future improvements could include
learnable refinement modules or interactive correction tools to ensure robust landmark prediction in all scenarios.

7 Conclusion & Future Work

In this work, we have developed a comprehensive framework for fashion image analysis encompassing four primary
components: measurement instruction generation, classification, segmentation, and landmark extraction. The measure-
ment instruction generation module automates the creation of detailed garment measurement guidelines, facilitating
standardized assessments. The classification module leverages a large-scale, high-quality dataset of fashion images,
which we curated and made publicly available [Yuanl |[2025a]]. This dataset serves as a valuable resource for training and
evaluating fashion classification models. Moreover, we fine-tuned our models with the Zara dataset [[Yuan, [2025b] for
better downstream tasks such as landmark extraction. The landmark extraction component employs a function capable
of detecting customized landmarks on garments, providing precise localization for further analysis. Additionally, we
have implemented a segmentation module that delineates garment boundaries, aiding in the isolation of clothing items
from complex backgrounds.

Our framework is designed with flexibility, scalability, and modularity in mind. Each component operates independently,
allowing for easy updates and integration of new methodologies. This structure ensures that the system can adapt
to evolving research and industry needs, accommodating various fashion analysis tasks. The modular approach also
facilitates the replacement or enhancement of individual modules without disrupting the overall system, promoting
long-term usability and extensibility. Moreover, we have also developed user-friendly web interfaces for these modules,
enabling individuals with limited coding experience to easily utilize our framework and benefit from its research
outcomes.

Despite these advancements, there are areas where our framework can be improved. In the classification module, while
our base models have achieved commendable accuracy, there is still potential for further enhancement. Recent studies
have reported higher performance metrics on benchmark datasets. For instance, the CNN-3-128 model achieved an
impressive accuracy of 99.44% on the Fashion-MNIST dataset, outperforming previous benchmarks [Mukhamediev)
2024)]. Additionally, exploring more sophisticated architectures, such as hybrid transformer models, could yield even
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better results. For example, a recent study achieved 99.83% accuracy in food image classification by leveraging
global and local feature fusion through transformer-based models [Jagadesh et al.| [2025]. Incorporating such advanced
techniques into our framework could potentially enhance classification accuracy even further. However, our fine-tuning
experiments have shown that while model performance improves on the training set, it may lead to a decline in metrics
on the original test set, indicating that further optimization of fine-tuning strategies and domain adaptation techniques
will be necessary for robust performance across diverse datasets.

The landmark extraction module, although effective for predefined landmarks in datasets like DeepFashion2, may
encounter challenges when applied to customized landmarks. The pretrained models excel in scenarios where landmarks
are consistent and well-defined. However, for customized landmarks, the variability in garment designs and poses can
lead to inaccuracies. Research into multimodal generative Al techniques, such as those explored in MetaCloth, offers
promising avenues for enhancing the adaptability and robustness of landmark detection in diverse contexts [|Ge et al.,
2022].

Looking forward, several directions for future work are evident. One promising avenue is the development of an
intelligent agent similar to GPT, capable of autonomously executing the entire fashion analysis pipeline. Such an agent
would not only perform tasks with high accuracy but also handle edge cases effectively, learning from diverse datasets
and adapting to new scenarios. Innovations in multimodal learning and few-shot learning, as demonstrated by models
like MetaCloth, could be crucial in training this agent to generalize across various fashion items and contexts.

Another key direction involves enhancing the tunability of our framework. This would allow users to fine-tune the
models for classification, segmentation, and landmark extraction to accommodate new garment types or variations. By
incorporating a dynamic system that can automatically adjust the model parameters based on new data, the framework
would be able to classify, segment, or extract landmarks from previously unseen or evolving garment categories. This
flexibility would ensure the system’s continued relevance as new fashion items emerge and could significantly improve
its adaptability in real-world applications.

In conclusion, our framework represents a significant step forward in the automation of fashion image analysis. By
addressing current limitations and exploring innovative solutions, we aim to create a more robust and adaptable system
that can meet the dynamic challenges of the fashion industry.

8 Computational Detail & Source Code

We recommend using Python version 3.11 or greater. The following Python packages and their corresponding versions
are required:

. tqdm==4.67.1

* pandas==2.2.2

* numpy==2.0.0

* torch==2.7.0

* torchvision==0.22.0

* scikit-learn==1.6.1

* scipy==1.15.2

* Pillow==11.1.0

* matplotlib==3.10.0

* transformers==4.50.3

* kornia==0.8.0

* timm==1.0.15

* einops==0.8.1

* shapely==2.1.1

* opencv-python==4.11.0.86

The source code can be found at: https://github.com/lygitdata/GarmentIQ.
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Appendices
A Measurement Instruction JSON Schema
{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Garment Measurement Schema",
"description": "One or more garments, each with landmarks (all required) and
measurements (all required)",
Iltypell: llobjectll,
"patternProperties": {
n -~ + $ n : {
"$ref": "#/definitions/garment"
}
} E
"additionalProperties": false,
"definitions": {
"garment": {
lltypell: "ObjeCt",
"required": [

"landmarks",
"measurements"
],
"properties": {
"landmarks": {
"$ref": "#/definitions/landmarks"
}’
"measurements": {
"$ref": "#/definitions/measurements"
}
},
"additionalProperties": false
}!
"landmarks": {
Iltypell: llobjectll ,
"description": "Map of point-ID -> landmark",
"minProperties": 1,
"patternProperties": {
"~[0-91+8%": {
"$ref": "#/definitions/landmark"
}
}3
"additionalProperties": false
}3
"landmark": {
"type": "object",
"description": "A single landmark on the garment",
"required": [
"predefined",
"description",
nyn R
Ilyll
]’
"properties": {
"predefined": {
"type": "boolean",
"description": "true = model-detected; false =
},
"description": {
lltypell: llstringll ,
"description": "Semantic label for this point"
},
gt {

"type": "number",
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"description": "X-coordinate in image space"

uyn: {
"type": "number",
"description": "Y-coordinate in image space"
}’
"neighbors": {
Iltypell: "ObjeCt" ,
"description": "Exactly two nearby landmarks, keyed by their IDs",
"minProperties": 2,
"maxProperties": 2,
"patternProperties": {
"A[O_9]+$H: {
"$ref": "#/definitions/neighborLandmark"
}
}’
"additionalProperties": false
})
"derivation": {
"$ref": "#/definitions/derivation",
"description": "How this custom point was derived"
}
}3
"additionalProperties": false
}3
"neighborLandmark": {
"type": "object",
"required": [
"predefined",
"description",
"yt s
"y"
]3
"properties": {
"predefined": {
"type": "boolean"
"description": {
”type": "String"
||;(u: {

"type": "number"

uyn . {

"type": "number"

},
"additionalProperties": false
},
"derivation": {
IItypell: "ObjeCt" ,
"required": [
"function"
]3
"minProperties": 2,
"properties": {
"function": {
"type": llstringll ,
"description": "Name of the derivation function"
}
},
"patternProperties": {
"~(?!function$) [a-zA-Z_][a-2zA-Z0-9_1*3%": {
"type": "string",
"description": "Named argument for the derivation function"
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}
},
"additionalProperties":
},
"measurements": {
Iltypell: llobjectll ,
"description": "Map of measurement -name ->
"minProperties": 1,
"patternProperties": {
"~[a-20-9_ 1+$": {
"$ref": "#/definitions/measurement"

false

}
}3
"additionalProperties":

},

"measurement": {
Iltypell: llobjectll ,
"required": [

"landmarks",

"description"
]’

"properties": {

"landmarks": {

lltypeH: llobjectll ,
"required": [
"start",
Ilendll
]’
"properties": {
"start": {
’ltypell:
"pattern":
}’
"end": {
’ltypell:
"pattern":

false

"string",
"~[0-9]+§"

"string",
||A[O_9]+$||
}
}’
"additionalProperties":
}’
"description": {
"type": "string"

false

}’

"additionalProperties": false

}

measurement definition",
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B Short Sleeve Top Measurement Instruction in JSON Format

"short sleeve top":
"landmarks": {
||2||: {
"predefined":

"description":

"x": 83,
uyn: 15

}3

nweyn. {

"predefined":

"description":

"x": 68,
llle: 25
}3
nqomn. {
"predefined":

"description":

"x": 60,
llle: 65
},
n O!l: {
"predefined":

"description":

"x": 140,
Ille: 65
},
n 3": {
"predefined":

"description":

"x": 170,
Ilyll: 50
})
n 5Il: {
"predefined":

"description":

"x": 143,
Ilyll: 25
})
"26": {
"predefined":

"description":

{

true,
"neck_left_outer",

true,
"shoulder_left_top",

true,
"armpit_left",

true,
"armpit_right",

true,
"cuff_right_outer",

true,
"shoulder_right_top",

false,
"custom_landmark",

"x": 82.12834930419922,
"y": 164.28207397460938,

"derivation":
"function":

{

"derive_keypoint_coord",

"pl_id": ||2||,
"p2_id": Il4ll,
"p3_id": "16",
"p4_id": Il15"’
"p5_id": Il17ll’

"direction":

}’
"neighbors":
"nq{g" . {

"parallel"

"predefined": true,
"description": "hem_left",

"x": 56,
"y": 160
}1
n 6": {

"predefined": true,
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"description": "hem_center",
"x": 100,
llle: 165
¥
}
},
n 7|l: {
"predefined": false,
"description": "custom_landmark",
"x": 46.79122543334961,
"y": 33.494102478027344,
"derivation": {
"function": "derive_keypoint_coord",
Ilpl_idll: Il12ll’
llp2_idll: II7II,
Ilps_idll: Ilgll’
llp4_idll: I|7II,
Ilp5_idll: Il9l|’
"direction": "perpendicular"
})
"neighbors": {
||7||: {
"predefined": true,
"description": "shoulder_left_top",
"x": 58,
llle: 25
}’
n u: {
"predefined": true,
"description": "sleeve_left_outer_mid",
"x": 40,
llle: 40
}
}
}
}’
"measurements": {
"front length": {
"landmarks": {
llstart": Il2l|,
n end n B Il26ll
}’
"description": "26: intersection of vertical line from 2 to bottom contour
n
},
"back width": {
"landmarks": {
"Start": II7I|,
n end n B Il25ll
}’
"description": "/"
}3
"chest": {
"landmarks": {
"StaI‘t"I Il12ll’
n end n : Il2oll
})
"description": "/"
},
"sleeve width": {
"landmarks": {
llstartll: Il12ll’
n end n B ||27|I
}’
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"description": "27:

contour"
}’
"sleeve length": {
"landmarks": {
llstart ll: ||23|I s
llendlI: Il25ll
},
"description": "/"

}

intersection of perpendicular line from 12 to sleeve
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C Short Sleeve Top Measurement Instruction in PDF Format

Measurement instruction: short sleeve top

Generated on: 05/13/2025, 10:04:25 PM

Generated via GarmentlQ.ly.gd.edu.kg - No liability assumed.

Name

front length
back width
chest

sleeve width
sleeve length

Description

26: intersection of vertical line from 2 to bottom contour

/
/

27: intersection of perpendicular line from 12 to sleeve contour

/
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